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We study the design of a decentralized two-sided matching market in which agents’ search is guided by

the platform. There are finitely many agent types, each with (potentially random) preferences drawn from

known type-specific distributions. Equipped with knowledge of these distributions, the platform guides the

search process by determining the meeting rate between each pair of types from the two sides. Focusing on

symmetric pairwise preferences in a continuum model, we first characterize the unique stationary equilibrium

that arises given a feasible set of meeting rates. We then introduce the platform’s optimal directed search

problem, which involves optimizing meeting rates to maximize equilibrium social welfare. We first show

that incentive issues arising from congestion and cannibalization make the design problem fairly intricate.

Nonetheless, we develop an efficiently computable search design whose corresponding equilibrium achieves at

least 1/4 the social welfare of the optimal design. In fact, our construction always recovers at least 1/4 the

first-best social welfare, where agents’ incentives are disregarded. Our directed search design is simple and

easy-to-implement, as its corresponding bipartite graph consists of disjoint stars. Furthermore, our design

implies the platform can substantially limit choice and yet induce an equilibrium with an approximately

optimal welfare. Finally, we show that approximation is likely the best we can hope for by establishing that

the problem of designing optimal directed search is NP-hard to even approximate beyond a certain constant

factor.
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1. Introduction

Matching platforms have become prominent facilitators of social and economic connections in

recent years: Thirty percent of U.S. adults have used dating platforms to look for a partner (Pew

Research Center 2020); and 35% of U.S. workers have engaged in some form of freelance labor in

the past year, in part thanks to the growth of online marketplaces for freelance work (Ozimek 2019).

Platforms, such as e-Harmony, try to improve search via match recommendations that are based on
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learned user characteristics and match compatibility models. While carefully designed models have

predictive power, the compatibility of a pair often also involves an idiosyncratic component that can

only be discovered upon meeting. Furthermore, since matching requires a “coincidence of wants,”

the platform cannot compel users to match, even if preferences are known. In such environments,

how can matching platforms improve the search process while respecting users’ incentives?

Toward answering this question, we construct a dynamic matching market between two heteroge-

neous populations, each composed of finitely many types. To be concrete, we take a dating market

for heterosexual couples as our base example and thus refer to agents of the two sides as women

and men. An agent’s type captures their common features observable to the platform and partially

determines their preferences for opposite-side agents.1 In addition to the type-specific component,

each agent’s preference for any opposite-side agent has an idiosyncratic component that is unknown a

priori and is only revealed when the pair meets.2 In our model, agents have cardinal preferences, and

each woman-man pair shares a symmetric valuation that is drawn from a distribution corresponding

to their types. Symmetric preferences capture the notion of mutual compatibility in a relationship,

i.e., any relationship is either win-win or lose-lose. Upon meeting, both agents observe their shared

valuation; each then decides whether to match or to wait for another candidate. We consider a

continuum model where agents of different types arrive at exogenous rates and leave the market

either upon meeting a satisfactory match or unmatched due to a life event which occurs at a given

rate (see Section 2.1 and Figure 1). Such an exogenous departure rate captures search friction in

the sense that an agent can only meet a limited number of candidates before leaving unmatched

due to a life event.

With knowledge of preference distributions and exogenous arrival/unmatched departure rates, the

platform guides the search process by designing meeting rates between pairs of woman-man types.

The set of meeting rates for a given type can be viewed as an assortment of opposite-side types

offered to them over time. Faced with such an assortment, an agent decides on which candidates

to accept or reject in order to maximize their long-run utility. We focus on the stationary and

symmetric equilibria of the underlying dynamic game: We show for any set of “feasible” meeting

rates that respect natural physical constraints (see eqs. (2) and (3)), there exists a unique such

equilibrium in which each agent type plays a threshold strategy (see Proposition 3.1). Establishing

the uniqueness of the stationary equilibrium relies on the symmetric structure of preferences. In

fact, in our constructive proof, we show that iterating the best response map converges after finitely

1 We remark that platforms such as e-Harmony extract these features using surveys; however, we abstract away from
such details and assume that these features are directly observable.

2 Such preference structures have been studied previously in matching literature; see e.g., Ashlagi et al. (2020) and
Kanoria and Saban (2021).
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many rounds (see Proposition A.4). Uniqueness of equilibrium along with its simple structure

enables us to sidestep issues of instability and equilibrium selection which may make the platform’s

design problem ill-defined. As such, our structural results may be of independent interest in future

work on the design of dynamic matching markets.3

We remark that by taking such a design approach to search, our work departs from the prevailing

search environment studied in the literature (Burdett and Coles 1997, Shimer and Smith 2000,

Adachi 2003, Lauermann and Nöldeke 2014), which assumes agents meet uniformly at random. In

the presence of sufficient differentiation across types, such a “hands-off” approach to search can be

arbitrarily sub-optimal: If the platform already knows that sports fans only marry sports fans and

outdoor enthusiasts only marry outdoor enthusiasts, it should not waste time by letting outdoor

enthusiasts meet sports fans. (For a quantitative example, see the horizontal market presented in

Example 3.4.) At the same time, the optimal meeting design can be far more nuanced than simply

letting preferred pairs meet each other. This is due to disparities in arrival rates combined with

strategic behavior of agents, which can lead to issues of cannibalization and congestion. To alleviate

these issues, sometimes the platform may wish to restrict the choices of a type in order to induce a

matching outcome with globally higher welfare. To illustrate these behaviors, in Section 3.3, we

present an instance of an assortative market with deterministic preferences for which the optimal

meeting design is indeed non-assortative (see the vertical market presented in Example 3.5).

The aforementioned behaviors suggest that optimal design can be fairly subtle. In fact, we

show that the platform’s optimal directed search problem (formally introduced in Section 3.2)

is APX-hard, i.e., NP-hard to approximate beyond a fixed constant factor (see Theorem 4.2).

Nonetheless, we develop a solution (i.e., a set of feasible meeting rates) whose equilibrium welfare

is at least 1/4 of that of the optimal design (see Theorem 4.1). Our design relies on first relaxing

the incentive constraints and solving the first best problem. Through an intricate reformulation,

we show that the first-best problem can be reduced to a polynomial-time solvable “generalized

assignment problem” that admits a forest-structured solution (see Section 4.1). We then show

that the assignment problem admits a 2-approximate solution consisting of disjoint “star-shaped”

submarkets, i.e., submarkets where one side consists entirely of a single type. Finally, we recompute

the first-best for each submarket; utilizing its star structure, we show that the first-best solution

can be “modified” to respect incentive constraints with at most a factor of 2 loss in welfare (see

Section 4.2, Proposition 4.8, and Figure 2). This holds because for a star-shaped market, there is

an alignment of incentives between individual agents and the platform.

3 We highlight that several previous papers considered symmetric preference structures in static settings under other
names such as correlated two-sided or acyclic markets (Abraham et al. 2008, Ackermann et al. 2011).
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We complement our theoretical developments with numerical studies of markets where agents’

preferences have both a vertical and a horizontal component (see Section 5.1). Our comparative

statics with respect to the strength of each component as well as the intensity of search friction

illustrate that, compared to random meeting, our design is particularly effective in markets with

strong horizontal components or high search friction (see Figures 3 and 4 in Section 5). Furthermore,

our simulation results show that the welfare outcome of our approximation algorithm can be

substantially better than its theoretical guarantee.

The simple structure of our proposed solution—a collection of disjoint star-shaped markets—

implies that, with careful search design, platforms can substantially limit choice, offer very simple

assortments, and yet induce an equilibrium with approximately optimal welfare. By limiting choice,

our proposed solution also significantly simplifies the agent’s decision problem and thus reduces

the need for complex strategization. Our result is particularly intriguing since it holds without any

restrictions on the structure of the symmetric preferences.

1.1. Related Work

Our work relates to and contributes to several streams of literature on matching markets.

Search and Matching. There is a rich literature in economics that studies decentralized matching

models with search frictions and transferable/nontransferable utility. For an informative review, we

refer the interested reader to Chade et al. (2017). By and large, this literature focuses on uniformly

random meeting among agents and studies the properties of the resulting stationary equilibria. Our

framework is partly inspired by the seminal works of Burdett and Coles (1997) and Smith (2006) in

this literature. These papers consider matching models with nontransferable utility in which agents

of each side belong to a continuum of types. In the work of Burdett and Coles (1997), an agent’s

match utility only depends on the type (pizazz) of the other agent, while Smith (2006) considers

more general pair-specific utilities (production) that may be symmetric (akin to our preference

structure). However, unlike these papers, we do not assume that match utility is deterministic

and vertically differentiated.4 This implies that, in our general model, types are incomparable and

assortative matching is not well-defined.5 (See Example 3.4 for a horizontally differentiated market

within our framework.)

Another line of work in this literature studies the relationship between the stationary equilibria

of decentralized search under uniformly random meeting and corresponding sets of stable matchings.

Under a “cloning” assumption—which keeps the distribution of agents unchanged by asserting that

4 Chade (2006) extends the model of Burdett and Coles (1997) to incorporate uncertainty in preferences; however,
their model differs crucially from ours in that, even upon meeting, only a noisy version of the utility is observed.

5 After our Example 3.5, which considers a vertically differentiated market, we further discuss the connection between
this example and one of the examples presented in Burdett and Coles (1997).
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each time two agents match and leave, two single agents identical to them join—Adachi (2003)

shows that as search friction vanishes, the set of stationary equilibria converges to the set of stable

matchings of a corresponding centralized market. Relaxing such a cloning assumption, and thus

allowing for the distribution of agents to be endogenously determined, Lauermann and Nöldeke

(2014) show that stationary equilibria converge to stable matchings if and only if there exists a

unique stable matching in a corresponding discrete market.

Following this literature, we also model search friction as a time consuming process of meeting

partners and abstract away from incorporating any potential second-stage decision or cost upon

meeting (e.g., whether to go on a date with a potential partner). However, we emphasize that we

complement this literature by taking a design approach—motivated by online matching platforms—

to optimize directed search (i.e., non-uniform and pairwise type-specific meetings) in a model with

cardinal and symmetric preferences. In the spirit of designing the search environment, Shimer

and Smith (2001) study a model with transferable utility in which search is costly and search

intensities can vary across types. (However, agents still meet uniformly at random within the

searching population.) They show that a socially optimal solution (i.e., first-best) can arise as an

equilibrium of a decentralized search process with a linear tax or subsidy on search intensity.

Directed Search and Platform Interventions. Moving beyond random meeting, a series of recent

papers has studied different forms of platform design and intervention to facilitate search. Halaburda

et al. (2018) focus on the impact of limiting choice and show that when agents’ outside options are

heterogeneous, a platform that offers limited choice and charges a higher price can still compete

with ones without any choice restriction. A recent work of Kanoria and Saban (2021) shows that

limiting the action of agents, e.g., allowing for only one side to propose, and hiding information

about the quality of some agents can lead to welfare improvement. We now further discuss some of

the key differences between our paper and Kanoria and Saban (2021). First, we remark that the set

of actions of agents in Kanoria and Saban (2021) is richer in that, in addition to deciding on whether

to match upon meeting, agents decide on whether to request meeting a candidate and whether to

inspect that candidate (at a cost). While the model of Kanoria and Saban (2021) also includes

exogenous departure rates, their paper focuses on the regime where departure rates approach zero.

As a result, each agent has effectively unboundedly many meeting opportunities and the main search

friction is inspection cost. In contrast, in our model, each agent has a finite number of meeting

opportunities; upon each meeting—after observing the match utility—the agent decides whether to

accept the match or to risk departing unmatched before meeting another candidate. (As mentioned

above, a majority of papers in the search literature take a similar modeling approach.) Another

key difference is the nature of the platform intervention. Kanoria and Saban (2021) investigate

blocking one side from proposing and hiding information about quality in the special case of a
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vertical market where one side consists of a single type and the other one has two (high/low) types.

In contrast, we focus on designing meeting distributions—inspired by platform recommendation

systems—for general (not necessarily vertical) markets. Overall, compared to the aforementioned

papers, our model and our intervention are more fine-grained, in that both sides can have multiple

(potentially incomparable) types and we design pairwise type-specific meeting rates.

The approach of Banerjee et al. (2017) to designing visibility graphs in a two-sided market with

different types of buyers and sellers bears some similarity with ours. However, there are several

key differences: We consider a matching market without transfers in which the platform’s directed

search design impacts agents’ acceptance thresholds on both sides, while Banerjee et al. (2017)

focus on a network of buyers and sellers exchanging a single undifferentiated good in which the

platform impacts clearing prices by choosing a visibility subgraph.

Motivated by the role of matching platforms in shaping agent’s choice, a sequence of recent

papers (Ashlagi et al. 2019b, Aouad and Saban 2020, Rı́os et al. 2020) consider the problem of

assortment planning in two-sided matching in both static and dynamic settings. In this novel line

of work, agents are non-strategic in that their behavior is captured by a choice model such as the

Multinomial Logit model. Consequently, agents are oblivious to the action of those on the other

side and the platform design. While sharing a similar motivation with this emerging literature, our

work complements it by capturing agents’ strategic behavior in response to how the platform’s

design guides the search process. In our work, the set of meeting rates for a type can be viewed as

an assortment of options that the platform (sequentially) offers to an agent type. The equilibrium

response to the collection of such assortments determines the matching and welfare outcome.

Matching with Incomplete Information. Outside the framework of search, several papers explore

the problem of finding a stable matching where preferences are a priori unknown. Taking a

communication complexity approach, Gonczarowski et al. (2019) and Ashlagi et al. (2020) establish

bounds on the the amount of communication, measured by the number of bits, needed to find a stable

match in markets with private preferences. The recent work of Immorlica et al. (2020) focuses on a

setting where learning preferences is costly and show how costly information acquisition impacts an

agent’s preference. Furthermore, a few recent papers, such as Liu et al. (2020), use the multi-armed

bandit framework to model the process of learning preferences as an online learning problem and

develop efficient learning algorithms. Finally, in another direction, Emamjomeh-Zadeh et al. (2020)

analyze an iterative query process for learning a stable matching under general preferences. A

closely related line of work focuses on specific matching algorithms such as the Men-Proposing

Deferred Acceptance Algorithm, and examines agents’ incentives to manipulate preferences (see for

example Roth (1982), Coles and Shorrer (2014), and Immorlica and Mahdian (2015)).
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Figure 1 This schematic depicts the dynamics for a single type θ. Each dark gray box represents a type, with

the size corresponding to the type’s population mass. The light gray connections between boxes correspond to

how agents meet under directed search. The colored lines depict inflow and outflow for type θ, with width

corresponding to flow rate: Blue for arrivals, green for matching, and red for leaving unmatched. In stationary

equilibrium, the inflow should balance the outflow (as is depicted).

ηθ

ηθ′1

ηθ′2

αθ

ξθ · ηθ

δ · ηθ

Matching in Dynamic Environments. A growing number of papers study the design of dynamic

matching markets motivated by various applications ranging from school choice (Feigenbaum et al.

2020) to ride-sharing (Nikzad 2017) to public housing (Afeche et al. 2021). In this body of literature,

several papers focus on the timing (or frequency) of matching in a centralized market and the

trade-off between market thickness and waiting time (Ashlagi et al. 2013, 2019a, Akbarpour et al.

2020). In a closely related direction, papers such as Doval and Szentes (2019) and Arnosti and Shi

(2020) study the setting where strategic agents have heterogeneous preferences and thus face a

trade-off between matching with a less preferred choice (including their outside option) or waiting

longer. Recently, several papers examine the role of information design on managing congestion in

dynamic allocation problems (Anunrojwong et al. 2021, Ashlagi et al. 2021, Che and Tercieux 2021).

Our work complements the aforementioned papers by studying the design of a dynamic matching

market in which strategic agents with heterogeneous preferences repeatedly meet potential matches

recommended by the platform.

2. Model

In this section, we introduce a search model in a dynamic, two-sided matching market, where the

search process is facilitated by recommendations from a centralized platform. A graphical depiction

of our model, focused on the dynamics around a single type, is shown in Figure 1.
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2.1. Agents, Types, and Dynamics

We model our matching market as a flow economy, where the market consists of a continuum of

agents of infinitesimal mass. Agents on the two sides are differentiated into finitely many types

belonging to the sets M and W , respectively. Agents’ types determine prior distributions over their

preferences (see Section 2.2). We use Θ =M∪W to denote the combined type space of all agents.

For each type θ ∈Θ, we denote the population mass of type θ agents present on the platform by ηθ.

Throughout, we will use the notational convetion that θ′ refers to a generic type on the opposite

side of the market from type θ.

Our matching market takes place in continuous time. To track change in the population masses

ηθ over time, we use flow rates—the mass of agents arriving or departing per unit time.6 We

assume entry into the market is fixed exogenously, with type θ agents entering at a constant flow

rate of αθ (i.e., an αθ mass of type θ agents enters per unit time). This corresponds to the blue

inflow in Figure 1. On the other hand, we let departure from the market be partially determined

endogenously, with all agents eventually either leaving with a match or experiencing an exogenous

“life event” that causes them to leave unmatched. More specifically, the two ways an agent can

depart are as follows:

Matching. Agents leave the market when they enter into a mutually agreed upon match with

another agent (see the green outflow in Figure 1). We define ξθ so that ξθηθ is the flow rate at

which type θ agents do so. That is, each individual of type θ (assuming symmetry between

agents of type θ) leaves matched with probability ξθ dt during the infinitesimally small time

interval [t, t+dt). The value of ξθ is determined both by how the platform recommends potential

matches and who the agents themselves choose to match with (see Lemma 3.2).7

Life event. Agents also leave unmatched when they experience a “life event” (see the red outflow

in Figure 1). We assume life events occur randomly for each individual at a constant rate of δ dt.

That is, each individual experiences a life event with probability δ dt during each infinitesimally

small time interval [t, t+ dt). (Equivalently, the time an agent spends in the market is drawn

(unknown to them) from an exponential distribution of rate δ.) At the individual level, the

possibility of leaving unmatched acts as a discount factor and ensures that agents do not search

forever. At the platform level, individuals leave at a total flow rate of δηθ, which ensures that

the mass of unmatched agents does not grow unboundedly.

6 Although ηθ can in general vary over time, we suppress the time index on ηθ for notational compactness and because
our eventual focus will be on stationary equilibria, in which case ηθ will be constant over time.

7 Note that ξθ can also vary over time; we suppress the time index as we did for ηθ.
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Our focus will be on the stationary equilibria of this market, where the inflow of arriving agents

balances the outflow of departing agents. We say that stationarity holds if

αθ = (δ+ ξθ)ηθ (1)

for all θ ∈Θ. Note that δ+ ξθ is the total rate at which individual type θ agents exit the market.

2.2. Preferences and Utilities

We assume that agents have cardinal preferences (i.e., a utility associated to matching with each

potential partner) and normalize the value of leaving unmatched to 0. In our model, the utility values

of specific potential partners are unknown ex ante. Instead, pairs of agents learn their valuations for

each other when they meet while searching (see Section 2.3), with their utilities being drawn from

a prior distribution given by their types.8 These priors represent the fact that agents may have

idiosyncratic preferences—beauty being in the eye of the beholder—that are not captured by their

type. We assume that these priors are common knowledge among the platform and the agents.

More formally, the utilities that two agents of types m ∈M and w ∈W derive if they match

are drawn from some joint distribution Dmw. Because we use Dmw to capture idiosyncrasies in

preferences, we assume that utilities are drawn independently from Dmw for each such pair of agents.

To model mutual compatibility, we also assume agents have symmetric valuations, meaning that if

two agents match, then each agent derives the same utility u∈R from the match.

As mentioned in the introduction, an agent’s type captures their common features. In our abstract

model, we assume that the platform directly observes these features and thus the agent’s type.

While some features in practice may be self-reported by agents and thus present opportunities for

misreporting, we argue that this is not a major concern in our setting and motivating applications.

In practice, repeated meetings make verification easier: For example, if one misreports their height,

then that would be revealed after meeting a potential partner, who could report back to the platform.

At the same time, untruthful reporting may result in severe punishments for an agent, such as being

permanently banned from the platform.9 On a more abstract level, in many settings of interest,

e.g., horizontally differentiated markets, it is unclear whether misreporting even helps an agent.

Under the symmetric valuations assumption, each joint distribution Dmw can be thought of as a

distribution over R with cumulative distribution function Fmw. To avoid a technical discussion of

8 We assume that agents do not meet twice, since for any agent, there are uncountably many agents of each type that
they could meet.

9 For example, Hinge’s Terms of Service require each user to not “Misrepresent your identity, age, current or previous
positions, qualifications, or affiliations with a person or entity.” Violating these terms results in being banned from
the platform.

https://hinge.co/terms
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tiebreaking10 we make the mild assumption that Dmw is a continuous distribution for all (m,w).

Then Fmw is absolutely continuous and Fmw(τ) = Pr(u ≤ τ) for u ∼ Dmw. Finally, to make our

notation for distributions symmetric, we define Dwm :=Dmw and Fwm := Fmw for all (m,w).

2.3. Directed Search

A key feature of our model is that search is mediated by a platform. At a high level, the platform

directs search by picking for each agent type θ the rates at which they “meet” other agent types

while searching. For each agent, search consists of a sequence of meetings with potential partners

until either a match is formed or they leave unmatched. When two agents meet, each must decide

whether to accept or reject the match. If both parties accept (i.e., there is a double coincidence of

wants), then they match with each other and leave the market. Otherwise, both agents remain in

the market and continue their respective searches.

At the individual level, the frequency at which an agent encounters other agents of any given

type follows a Poisson process with rate given by the platform’s directed search policy. Upon two

agents of types θ and θ′ meeting, their valuation u for the match is drawn from Dθθ′ and revealed

to them. Each agent then decides whether to accept or reject the match, with the match forming

if and only if both accept. If the agents match, each leaves the market with utility u; otherwise,

each continues their search. We assume agents are rate-limited and normalize time so that agents

can meet at most one candidate per unit time on average. That is, we require the total frequency

of meetings for any agent to follow a Poisson process with at most unit rate—this is our capacity

constraint.

At the platform level, directed search can be thought of as some mass fmw of type m and type

w agents, for each pair of types (m,w), meeting each other per unit time. In particular, equal

masses of type m and type w agents should meet each other over any time interval. Note that this

property must be satisfied if we were to explicitly pair agents in a discrete model. While our model

is continuous, we can still imagine the platform “pairing” equal masses of randomly sampled agents

for meetings at each instant of time. By requiring that agent-level Poisson processes be consistent

with this fact, we obtain our flow balancing constraint.

We now state the directed search model sketched above in more formal terms. For any θ ∈Θ,

define an assortment to be a collection of rates λθ(θ
′)≥ 0 for types θ′ on the opposite side such

that type θ agents meet type θ′ agents following a Poisson process with rate λθ(θ
′). The platform,

as part of its design, chooses an assortment λθ for each type θ ∈Θ.

A set of assortments {λθ}θ∈Θ is feasible if it satisfies the following two sets of constraints:

10 While all of our arguments work with discrete distributions, one has to take care to define tiebreaking properly.
On the other hand, note that any non-continuous distribution can be approximated by a continuous distribution by
adding a small amount of (bounded) noise.
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Capacity. The total rate of meetings for type θ agents is bounded by 1 for all types θ ∈Θ:∑
θ′

λθ(θ
′)≤ 1. (2)

(Note that
∑

θ′ λθ(θ
′) is the total rate because merging Poisson processes sums their rates.)

Flow balance. For all pairs (m,w)∈M×W, the mass of type w agents met by type m agents

per unit time equals the mass of type m agents met by type w agents per unit time. By an

exact law of large numbers (Sun 2006, Duffie et al. 2018)11, we can write this condition as

fmw := ηmλm(w) = ηwλw(m). (3)

That is, the mass fmw of type m and w agents that meet per unit time is well-defined.

We assume the platform can direct search according to any feasible set of assortments.

To motivate the Poisson assumption, we think of the platform as implementing a feasible set of

assortments by randomly sampling a subset of each type to meet some other type at each instant

in time. With uniform sampling, individual agents will experience meetings at a Poisson rate.

Note that by assuming uniform sampling, we implicitly restrict the platform to designs that are

anonymous and independent of agents’ histories.

3. The Platform’s Design Problem

In this section, we introduce the platform’s design problem, namely: How should the platform

suggest meetings in directed search to maximize social welfare in equilibrium? In order to formally

define the problem, we first describe the agents’ strategic decision-making problem and briefly

characterize the equilibria that arise.

3.1. Strategies and Equilibrium Play

Any set {λθ}θ∈Θ of assortments defines a game for the agents, in which agents strategically decide

which potential partners to accept and reject in their meetings. As our focus will be on stationary

equilibria, we assume agents play time- and history-independent strategies. We further assume that

strategy profiles are symmetric within each type. We can thus write the strategy of type θ agents

as a function σθ(θ
′, u) taking values in [0,1], specifying the probability with which a type θ agent

accepts when meeting a type θ′ agent whom they value at utility u.

A property of our setup is that no individual agent can directly influence the behavior of other

agents, as agents are only affected by the action profiles of types in aggregate. Thus, rather than

modeling agents as playing a full-fledged dynamic game, we can think of each agent as facing a

11 As in the related literature on search and matching, we formally require a continuous-time exact law of large
numbers for random matching; such a result has only recently been developed rigorously for discrete-time settings by
Duffie et al. (2018).
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Markov decision process (MDP) derived from their assortment λθ and strategies σθ′ of the agents

on the opposite side.12 Then, a strategy σθ is a best response for type θ agents if and only if it is an

optimal policy for this MDP. It follows that a strategy profile {σθ}θ∈Θ is a Nash equilibrium if and

only if the strategy of each type is an optimal policy for the MDP given by their assortment and

opposite side’s strategies.

In Section A.1, we formally describe the agents’ MDPs and show that any Nash equilibrium in

“non-dominated” strategies is equivalent to one in threshold strategies, i.e., strategies σθ for which

there exists a threshold τθ such that σθ(θ
′, u) = 1 if u ≥ τθ and σθ(θ

′, u) = 0 if u < τθ.
13 In fact,

each threshold τθ in this equilibrium equals the expected utility uθ of type θ agents upon entry.

(Note that uθ depends on type θ’s strategy, the other agents’ strategies, as well as the platform’s

assortments—see Lemma 3.3.) Furthermore, we show in Section A.3 that the equilibrium prediction

of our model is unique in the following sense: For any set of assortments, our model makes a unique

prediction of the distribution of matches that are realized. We record these observations in the

following proposition (proven in Section A.3):

Proposition 3.1 (Structure of Nash Equilibria). Given any fixed set of assortments {λθ}θ∈Θ:

1. There exists a unique strategy profile where each type plays a threshold strategy with threshold

equal to that type’s expected utility. Moreover, this strategy profile is a Nash equilibrium.

2. Any Nash equilibrium in non-dominated strategies produces the same distribution (in both types

and utilities) of realized matches as the preceding Nash equilibrium in threshold strategies.

In light of Proposition 3.1, it suffices to focus our attention on equilibria in threshold strategies.

To facilitate our discussion of such equilibria, we state expressions for the rate ξθ at which agents

match (in Lemma 3.2) and their expected utility uθ when all agents play threshold strategies (in

Lemma 3.3).

Lemma 3.2 (Matching Rate). Suppose each type θ ∈Θ plays a threshold strategy with threshold τθ.

Then the rate ξθ at which individual type θ agents match is

ξθ =
∑
θ′

(
λθ(θ

′)

∫ ∞
max(τθ,τθ′ )

dFθθ′

)
. (4)

Proof. The rate at which an agent of type θ matches is the sum of the rates at which they meet

each type θ′ weighted by the probability such a meeting results in a match. The latter probability

is 1−Fθθ′(max(τθ, τθ′)) =
∫∞

max(τθ,τθ′ )
dFθθ′ in terms of the agents’ thresholds τθ and τθ′ .

12 Note that agents are not directly affected by the actions of other agents on the same side.

13 In our analysis, we eliminate dominated strategies that reject matches worth more than one’s expected continuation
utility. Performing such a pruning is necessary to rule out degenerate equilibria (e.g., the one where agents reject all of
their potential matches because they do not expect anyone to ever accept).
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Lemma 3.3 (Expected Utility). Suppose each type θ plays a threshold strategy with threshold τθ.

Then the expected payoff uθ of type θ agents is

uθ =

∑
θ′

(
λθ(θ

′)
∫∞

max(τθ,τθ′ )
udFθθ′

)
δ+

∑
θ′

(
λθ(θ′)

∫∞
max(τθ,τθ′ )

dFθθ′
) . (5)

(Note that by Lemma 3.2, the denominator can also be written as δ+ ξθ.)

While the proof of Lemma 3.3 depends on the formal definition of the MDP, the intuition for the

formula is simple: For any type θ agent, the memorylessness of the MDP implies their expected

utility equals their expected utility conditioned on leaving at any particular instant. Conditioning

on such an event, we see that with probability proportional to δ, they left due to a life event,

and with probability proportional to λθ(θ
′)
∫∞

max(τθ,τθ′ )
Fθθ′ , they left because they matched with an

agent of type θ′. In equation (5), we simply express the agent’s expected utility as the sum of their

expected utilities in each of these scenarios weighted by probability of occurrence.

3.2. Optimal Directed Search

The platform’s design problem is to design the search process via assortments in order to induce a

stationary equilibrium that is (approximately) optimal in terms of social welfare. Thus, in addition

to designing the assortments, the platform should ensure that those assortments are sustainable

in equilibrium. When analyzing the design problem, we assume that the platform has access to

the departure rate δ, the arrival rates αθ for all θ ∈Θ, and the preference distributions Dmw for all

(m,w)∈M×W.

More formally, we say that a set of assortments {λθ}θ∈Θ induces a stationary equilibrium if, for

the equilibrium strategy profile {σθ}θ∈Θ, there exist population masses {ηθ}θ∈Θ such that:

1. Stationarity (as defined in eq. (1)) holds for all types θ ∈Θ.

2. The assortments are feasible with respect to the population masses (i.e., (2) and (3) hold).

By Proposition 3.1, a set of assortments {λθ}θ∈Θ implies a unique Nash equilibrium in threshold

strategies. Furthermore, these threshold strategies determine ξθ for each θ by Lemma 3.2. Given

{ξθ}θ∈Θ, the stationarity condition then determines ηθ for each θ. Therefore, any choice of assortments

{λθ}θ∈Θ induces at most one stationary equilibrium, making the platform’s optimization problem

over the assortments well-defined.14

Recall that the platform’s optimization objective is social welfare. For stationary equilibria, social

welfare is defined as the total flow rate of utility realized by agents matching with each other. Note

that the symmetric valuations assumption implies each of the two sides contributes exactly half of

14 Since our model uniquely predicts play given assortments, stationary equilibria are also self-sustaining once
established.
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the total welfare. The platform’s optimization problem is thus to find the assortments {λθ}θ∈Θ that

induce a stationary equilibrium with maximum welfare.

Our setup naturally lets us cast the platform’s design problem of finding a welfare-maximizing

policy for directed search as a computational one: Given inputs δ, {αθ}θ∈Θ, and {Dmw}(m,w)∈M×W ,

compute the assortments {λθ}θ∈Θ that induce a stationary equilibrium with maximum welfare. We

name this problem OptimalDirectedSearch.15

We remark that we do not dwell on dynamical issues beyond steady state (e.g., convergence to

equilibrium from “cold starts”). Instead, we assume that the platform has the power to manipulate

entry into the market at time 0 and can ensure that the requisite populations of agents are present

for the desired equilibrium to sustain indefinitely. This motivates our objective for the platform of

finding a welfare-maximizing stationary equilibrium.

3.2.1. Optimal Directed Search as an Optimization Problem Stationarity, feasibility,

and agents playing best responses can all be encoded (albeit indirectly) as constraints on the

assortments. We can thus write OptimalDirectedSearch as the following constrained optimization

problem:

max
λθ,τθ,ξθ,ηθ

∑
m∈M

∑
w∈W

(
ηmλm(w)

∫
max(τm,τw)

udFmw

)
+
∑
w∈W

∑
m∈M

(
ηwλw(m)

∫
max(τm,τw)

udFmw

)
(6)

such that αθ = (δ+ ξθ)ηθ ∀θ ∈Θ (6a)

ηmλm(w) = ηwλw(m) ∀(m,w)∈M×W (6b)

1≥
∑
θ′

λθ(θ
′) ∀θ ∈Θ (6c)

ξθ =
∑
θ′

(
λθ(θ

′)

∫ ∞
max(τθ,τθ′ )

dFθθ′

)
∀θ ∈Θ (6d)

τθ =
1

δ+ ξθ

∑
θ′

(
λθ(θ

′)

∫ ∞
max(τθ,τθ′ )

udFθθ′

)
∀θ ∈Θ (6e)

λm(w), λw(m)≥ 0 ∀(m,w)∈M×W. (6f)

Here, constraint (6a) is the stationarity constraint (1); constraints (6b) and (6c) are the feasibility

constraints of flow balance (3) and capacity (2); constraint (6d) is formula (4) for individuals’ rate

of matching; constraint (6e) states that each type’s threshold is a fixed point of their MDP payoff

function (5); and constraint (6f) simply requires that the meetings rates be non-negative.

15 To formalize our computational problem while avoiding details relating numerical computation, we assume that
the platform’s knowledge of the preference distributions Dmw comes in the form of oracle access to the CDFs Fmw
and the tail expectations

∫∞
τ
udFmw. We further assume that the platform can solve for each agent’s best response

optimally. This is a mild assumption because the corresponding optimization problem boils down to a ternary search
on a unimodal function of the aforementioned oracle’s outputs (see Lemma 4.5 and its generalization Lemma B.1 in
Section A).
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The validity of constraint (6e) follows from Proposition 3.1: Our model’s unique prediction for

which matches are realized occurs when agents all play threshold strategies with threshold equal

to their expected utility. Moreover, the profile of thresholds satisfying this property is uniquely

determined by the assortments. Hence the social welfare of an assortment is given by the flow of

utility realized when all agents play such threshold strategies.

We note that while the optimization program (6) is written as an optimization problem over four

sets of variables {λθ}θ∈Θ, {τθ}θ∈Θ, {ξθ}θ∈Θ, and {ηθ}θ∈Θ, it is really an optimization problem over

the assortments {λθ}θ∈Θ: Agents’ thresholds {τθ}θ∈Θ and matching rates {ξθ}θ∈Θ are determined

entirely by their assortments, and the stationary masses {ηθ}θ∈Θ are in turn determined entirely by

the matching rates.

3.3. Illustrative Examples: Directed Search in Horizontal and Vertical Markets

With our setup of the model and the platform’s design problem now complete, we present two

simple examples with fundamentally different market structures: a horizontal market and a vertical

one. In these special cases, we are able to optimally solve OptimalDirectedSearch and thus gain

insight into the structure and value of the optimal design. Through the former example, we show

that platform-directed search can provide significant welfare gains relative to random meeting.

Through the latter, we illustrate some subtleties involving congestion and cannibalization that arise

(even in this very restricted setting) when solving OptimalDirectedSearch.

To motivate the utility of platform-directed search, we describe a market involving highly

heterogeneous preferences (i.e., horizontal differentiation) where directed search leads to significantly

greater efficiency than random meeting.

Example 3.4 (Horizontal market). We consider a market where the two sides areM= {m1, . . . ,mn}

and W = {w1, . . . ,wn}, with types mi and wj achieving positive utility from matching only if i= j.

Suppose also that the types are symmetric, with each type having the same arrival rate αθ = 1 and

each pair of compatible types (mi,wi) having the same preference distribution Fmiwi = F . Finally,

let δ > 0 be arbitrary.

We compare the welfares of two stationary equilibria—one under random meeting and another

under optimal directed search. Consider the symmetric equilibrium where agents meet randomly.

By symmetry, only a 1/n fraction of each agent’s meetings are with agents of the compatible

type. On the other hand, with the optimal directed search, the platform sets assortments so that

λmi(wi) = λwi(mi) = 1 for all i.16 Then, agents meet other agents of the same type with probability

1. To compare these two equilibria, observe that the random meeting equilibrium is equivalent to

the optimal directed search equilibrium with search friction nδ—under random meeting, each agent

16 This policy is optimal because its welfare matches the that of the first-best outcome (defined in Section 4.1).
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has a n times higher probability of leaving unmatched between meetings with compatible agents.

In the limit of large δ, where agents are likely to accept on their first meeting (or not match at

all), this leads to a multiplicative gap approaching n between the welfares of random meeting and

optimal directed search.

This example demonstrates that in a market with horizontal preferences, there can be a significant

amount of wasteful meeting if agents proceed with random search: In our example, under random

meeting, only one in n meetings involves pairs that are compatible with each other. On the

other hand, with directed search, the platform could eliminate such wasteful meeting entirely.

While admittedly stylized, this example nonetheless highlights the usefulness of directed search in

horizontally differentiated markets.

In our second example, of a vertically structured market, agents on each side of the market have

a common preference ordering over the types on the opposite side. In such a market, one might

expect that the optimal directed search scheme results in a positively assortative matching when

agents’ valuations are supermodular. However, this turns out not to always be the case. Because

agents arrive at disparate rates, matching assortatively can lead to inefficiency due to congestion at

the top of the market, and due to “high type” agents cannibalizing demand for “low type” agents.

While such phenomena make finding the exact optimal assortments challenging, we will show in

Section 4 that we can nonetheless find a set of assortments that are approximately optimal.

Example 3.5 (A Vertical Market). Consider a market with strictly vertical preferences, where the

agents on each side belong to either a high type H or a low type L. That is, we let M= {mH ,mL}

and W = {wH ,wL}. Suppose the utility distributions FmHwH , FmLwH , FmHwL , and FmLwL are point

masses at u(1 + 2ε), u, 1 + ε, and 1, respectively, for u� 1 and ε� 1.17 Thus, agents always prefer

matching with high-type agents over low-type agents. Suppose further that the arrival rates are

such that αmH = αwL = 1 and αwH = αmL = 1/u. Finally, we consider this example in the regime

where δ is very small (i.e., suppose we are in a nearly frictionless market).

To analyze the possible stationary equilibria of this market, we first consider what happens in the

equilibria where high-types only match with high-types and low-types only match with low-types. The

maximum possible welfare in such a equilibrium is bounded above by 2((1 + 2ε) +αmL)/(1 + δ)≈ 2,

since the welfare generated by the high-types is at most 2 ·αwH ·u(1 + 2ε)/(1 + δ) and the utility

generated by the low-types is nearly negligible at 2 ·αmL · 1/(1 + δ). In particular, matching for

both high- and low-types is bottlenecked by the low arrival rate of the less common type. One can

17 An astute reader may notice that, technically, our preference distributions do not satisfy our continuity assumption.
We present our example this way for simplicity’s sake—the same example can be made to work with continuous
distributions by adding some small amount of Gaussian noise to each utility value.
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think of these equilibria as being congested at both levels of the market: Due to the disparities in

arrival rates, there are many type mH agents hoping to match with only a few type wH agents and

many type wL agents hoping to match with only a few type mL agents. As a result, large numbers

of type mH agents and type wL agents go unmatched.

Next we observe that such equilibria—where high-types only match with high-types and low-types

only match with low-types—arise if the expected utility umH of type mH is greater than 1 + ε.

Notably, type mH agents are not willing to match with type wL agents due to the possibility of

matching with a type wH agent: If umH > 1 + ε, then Proposition 3.1 tells us that type mH agents

will not match with type wL agents, since type mH agents would only obtain 1+ε utility from doing

so. From the platform’s perspective, the presence of wH agents in type mH ’s assortment cannibalizes

demand for type wL agents. Likewise, the possibility of matching with type mH makes type wH

reject type mL agents—the expected utility of type wH agents is at least (1 + ε) ·αmH/αwH > u

from matching with type mH .

On the other hand, we can obtain a more efficient equilibrium if the expected utility of type mH is

slightly lower, e.g., if they only match with type wL. Consider the assortment where type mH and wL

agents only meet each other and type wH agents and mL agents only meet each other. All agents meet

at maximal rates; furthermore, all meetings result in matches because no type has other options. As a

result, the social welfare in equilibrium is 2(αmH ·(1+ε)+αmL ·u)/(1+δ) = 2((1+ε)+1)/(1+δ)≈ 4.

That is, the social welfare of this non-assortative “diagonal” set of assortments (which happens to

be optimal) is nearly twice that of any equilibrium where high-types only match with high-types

and low-types only match with low-types.

We conclude our discussion of the above market with two remarks. First, the cannibalization

effect (and its welfare implications) is in the same spirit as the sorting externality discussed in

Burdett and Coles (1997) using a high/low type vertical market, but with a different preference

structure. In that setting, the preference of an agent only depends on the type of the other side,

and agents meet each other uniformly at random. Depending on the belief that type H would

match with a type L or not (and its corresponding match threshold), two different equilibria arise.

Interestingly, the assortative equilibrium has the lower welfare compared to the equilibrium under

which type H matches both types. Next, we note these phenomena arise in part due to the fact

that the platform design is anonymous and thus it cannot discriminate between agents beyond

their type. Indeed, at the opposite extreme, the platform could simply force agents to match with a

certain type, e.g., by having a subset of type mH agents only meet type wL agents and another

subset of type mH agents only meet type wH agents. However, we stress that such splitting of

types has two key drawbacks: (i) if agents are able to rejoin the platform under a different identity,
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then such separation is difficult to enforce; (ii) such discriminatory treatment may be unpalatable

to users from a fairness perspective. We also show in Section 4 that such an assumption is not

restrictive—our solution is constant-factor competitive against the first-best platform policy.

4. Approximation Algorithms

In this section, we show how the platform can construct in polynomial time a set of assortments

{λθ}θ∈Θ such that its induced equilibrium obtains a 4-approximation to the optimal social welfare.

Furthermore, the equilibrium resulting from our computed assortments has a simple and appealing

structure: It consists of disjoint submarkets such that each submarket has only a single type on one

of the sides. We also establish hardness of approximation for the platform’s optimization problem,

meaning that we cannot do better than a constant-factor approximation unless P = NP.

We actually show a slightly stronger result: The resulting equilibrium obtains a 4-approximation

to the optimal welfare that could be obtained in the first-best matching economy, where rather

than agents choosing to accept or reject, the platform gets to decide on behalf of the agents. (In

this first-best economy, the platform gets to choose the assortments as well.) Our theorem can thus

also be interpreted as a price-of-anarchy-style result, that agents’ self-interested behavior causes

welfare to degrade by at most a factor of 4 relative to the first-best optimum.

Theorem 4.1 (Computationally Efficient Approximation). There is a polynomial-time 4-

approximation algorithm for OptimalDirectedSearch. (In fact, this algorithm gets a 4-approximation

to the platform’s first-best optimal welfare.)

Our construction of these assortments and the resulting equilibrium proceeds as follows:

Solving for the platform’s first-best. We start by considering the platform’s optimization

problem for the first-best matching economy, where the platform gets to plan both the assort-

ments and which matches the agents accept. That is, we relax the agents’ incentive constraint

and allow the platform to optimize over thresholds τmw between each pair (m,w) of types. This

relaxation removes the main barrier—namely, incentives—to solving the optimization problem

exactly. Accordingly, we show that this relaxed problem can be reduced to a generalization of

the classical assignment problem and thus be efficiently solved.

Approximating via “star-shaped” markets. We then show that an optimal solution to this

“generalized” assignment problem can be converted into a stationary equilibrium (where we

now take agents’ incentives back into account) with at most a factor 4 loss in welfare. The key

ideas for this step are:

• Showing that the optimal first-best solution can be 2-approximated by another consisting

of “star-shaped” submarkets (which have a side where all the agents are of the same
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type). For this step, we draw on some classical observations about the structure of optimal

solutions from previous works on generalized assignment problems (Lenstra et al. 1990,

Chakrabarty and Goel 2010, Banerjee et al. 2017).

• Showing that for markets where all the agents are of the same type on one side, the

platform can obtain a 2-approximation to the optimal welfare of the first-best matching

economy. This step relies on the observation that in such markets, there is an alignment

of incentives between individual agents and the platform.

A constant-factor approximation algorithm is likely the best we can hope for, computationally:

We show in Section C that approximating the platform’s optimization problem to a factor better

than 24
23

is NP-hard.

Theorem 4.2 (Hardness of Approximation). Approximating OptimalDirectedSearch up to a
(

24
23
− ε
)
-

factor is NP-hard for any ε > 0.

We prove the above hardness result in Section C. From a technical perspective, our approach

very closely mirrors that of Chakrabarty and Goel (2010), who show hardness of approximation

for related problems (e.g., maximum budgeted allocation) by reducing from Hastad’s 3-bit PCP

(H̊astad 2001). While their technique applies to our setting, it is not clear that their hardness results

apply directly—a challenge specific to our setting is that our optimization problem is continuous

rather than discrete. To make this approach work, we must show that our complicated feasibility set

introduces a discrete element to the optimal allocation. But as a consequence, we obtain a slightly

worse constant c.

A constant-factor gap between first-best and second-best is also inherent to the

OptimalDirectedSearch problem. We show via example in Section B.1 that there exists a market

such that the first-best and second-best are separated by a factor of 2.

Proposition 4.3 (Gap Between First- and Second-Best). For any ε > 0, there exists a market

such that the platform’s first-best optimal welfare is at least 2− ε times the optimal (second-best)

welfare for OptimalDirectedSearch.

Before proceeding with the proof of Theorem 4.1, we remark that the first-best optimal welfare

and the welfare achieved by random meeting serve as natural benchmarks to compare our solution

against. (We remind the reader that, in our general setting, an assortative matching is not well-

defined.) Theorem 4.1 ensures that our solution achieves at least 1/4 of the former benchmark. On

the other hand, Example 3.4 implies the welfare achieved under our solution can be arbitrarily

larger than that achieved by random meeting. In fact, it is straightforward to show that for the
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horizontal market of Example 3.4, our solution coincides with the first-best.18 Consequently, for

large δ, its welfare gain compared to random meeting would be proportional to n.

In the remainder of this section, we develop the proof of Theorem 4.1.

4.1. The First-Best Matching Economy

In this section, we study the platform’s first-best optimization problem, where the platform has the

power to plan the entire matching economy. That is, in addition to designing assortments, we allow

the platform to ignore agents’ incentives and dictate each type’s strategy. The first-best relaxation is

obtained by modifying the optimization problem (6) as follows: Relax the best response constraint

(6e). Then, replace the per-type threshold variables τθ with pairwise threshold variables τmw that

take the place of max(τm, τw) in all expressions for all (m,w)∈M×W in (6).

To see why this relaxation corresponds to the platform’s first-best problem, note that rather than

optimizing over all agent strategies, the platform can restrict its attention to strategies σθ that have

a threshold for each type on the opposite side. This is because whenever two agents of types m and

w match at a certain rate, it is optimal for the matches realized to be the highest-valued ones. In

particular, the platform should never hope that agents of types m and w reject each other at utility

u but match at some utility u′ <u. Rather, there should exist a threshold τmw such that agents of

these types match if and only if u≥ τmw.

While even the relaxed optimization problem looks difficult to work with, our goal in this section

is to show that a careful reparametrization reduces the optimization problem to a linear program.

The resulting linear program is related to (and in fact generalizes) the linear programming relaxation

of the assignment problem; the main difference is that instead of having unit capacities on the flow

to each node, we allow for real-valued capacities. Formally, the reduction can be stated as follows:

Proposition 4.4 (First-Best “Assignment Problem”). Consider the linear program

max
βmw

2 ·
∑
m∈M

∑
w∈W

ρmw ·βmw (7)

such that
∑
w∈W

βmw ≤ αm ∀m∈M (7a)∑
m∈M

βmw ≤ αw ∀w ∈W, (7b)

where ρmw := maxτ≥0

∫∞
τ udFmw

δ+
∫∞
τ dFmw

. The platform’s first-best optimization problem is equivalent to (7)

in the following sense:

1. The two optimization problems have the same optimal objective value.

2. Any feasible choice of {βmw}m∈M,w∈W corresponds to a feasible choice of {λθ}θ∈Θ, {ηθ}θ∈Θ,

{ξθ}θ∈Θ, and {τmw}m∈M,w∈W that achieves the same objective value.

18 See Section 5 for a numerical solution of a similar horizontal market as well as further numerical analysis.
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Proposition 4.4 implies that to solve the first-best optimization problem, it suffices to solve the

linear program (7) and convert the resulting solution to an optimal choice of variables for the

first-best optimization problem. The proof of the Proposition 4.4 proceeds by first reparameterizing

the optimization program (6) using the flow balance constraint: We introduce the variable

fmw := ηmλm(w) = ηwλw(m)

for the total rate of meetings between each pair (m,w) ∈M×W. We can then encode the flow

balance, capacity, and stationary constraints into the single combined constraint

αθ ≥
∑
θ′

(
fθθ′

(
δ+

∫ ∞
τθθ′

dFθθ′

))
. (8)

That is, there exist corresponding values for λθ(θ
′), ξθ, and ηθ that satisfy the constraints of (6) if

and only if the fθθ′ variables satisfy (8). To finish, we introduce the variables

βmw := fmw

(
δ+

∫ ∞
τmw

dFmw

)
. (9)

We then substitute into (8) and the objective of (6). The latter becomes

2
∑
m∈M

∑
w∈W

(
βmw ·

∫∞
τmw

udFmw

δ+
∫∞
τmw

dFmw

)
. (10)

While the thresholds τmw are not yet fixed, these substitutions make the optimization effectively

unconstrained in τmw. Optimizing over τmw in the objective lets us write the objective in terms of

ρmw as in (7), since the only dependence on τmw is through the expression∫∞
τmw

udFmw

δ+
∫∞
τmw

dFmw
(11)

We defer full details of this analysis to Section B.2.

The final step in the above is setting τmw so that expression (11) is maximized. It turns out that

we can do so by setting τmw = ρmw. (That is, the expression achieves its maximum value at a fixed

point.) We record this observation here:

Lemma 4.5 (Fixed Point Structure of Optimal Threshold). Define

A(τ) =

∫∞
τ
udF

δ +
∫∞
τ
dF

,

where δ > 0 and F is a continuous distribution, and let ρ= maxτ≥0A(τ). Then A(ρ) = ρ. Moreover,

A is monotonically increasing for τ ≤ ρ and monotonically decreasing for τ ≥ ρ.
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Figure 2 This figure depicts the process for converting an optimal first-best solution to a stationary equilibrium,

while preserving welfare up to a factor of 4. We start with a first-best solution whose graph of positive weight

variables forms a forest (i.e., step (1)). The first arrow represents step (2), where we approximate the forest with

stars, each corresponding to a star-shaped submarket. The second arrow represents solving the first-best for each

star-shaped submarket (see Lemma 4.9). The third pair of arrows corresponds to the cases we handle in the proof

of Proposition 4.8—in particular, whether the new first-best solution induces a stationary equilibrium (Case 1) or

not (Case 2).

2-approx re-solve each submarket

2-approx

Case 1

Case 2
ORfirst-best solution “star-shaped” submarkets first-best solution

4.2. Designing an Approximately Optimal Equilibrium

In the previous section, we described how the platform can solve for a first-best solution, where

agents’ incentives are ignored. In this section, we now bring back agents’ incentives and show

how to convert the first-best solution into a stationary equilibrium. We show that our conversion

process retains at least 1
4

of the welfare of the first-best solution, thereby giving us an efficient

4-approximation algorithm for OptimalDirectedSearch.

At a high-level, our conversion process works as follows (see Figure 2 for a visual depiction):

Step (1). Find a solution {β∗mw}m∈M,w∈W to the linear program (7) such that the graph on Θ

that has an edge (m,w) for each β∗mw > 0 is a forest.

Step (2). Approximate this edge-weighted forest with a union of vertex-disjoint star graphs such

that the star graphs contain at least half the total edge weight of the forest.

Step (3). Construct a set of assortments for each star-shaped submarket (where one side has

only one type of agent) that induces a stationary equilibrium whose social welfare is at least

half the first-best social welfare of the submarket.

The first two of the above steps have appeared in other works featuring generalized assignment

problems Lenstra et al. (1990), Chakrabarty and Goel (2010), Banerjee et al. (2017), where they

were similarly used to simplify the problem structure. Our main insight for this stage of the proof

lies in the third step, where we leverage structural properties of the agents’ decision problem to

show that the optimal stationary equilibrium in each submarket produces at least half the first-best

welfare of that submarket.19

19 Note that this last step is distinct from simply computing the optimal stationary equilibrium. Computing the
equilibrium is not enough to show that it actually obtains at least half the first-best welfare.



Immorlica, Lucier, Manshadi, Wei: Designing Approximately Optimal Search 23

These steps, together with Proposition 4.4, prove our approximation result Theorem 4.1.

4.2.1. Steps (1) and (2) We now state the lemmas that give the results needed for steps

(1) and (2). The first lemma, having appeared in various forms since Lenstra et al. (1990), shows

that there exists an optimal solution for our generalized assignment problem such that the positive

variables βmw > 0 form a forest when viewed as edges on a graph with vertex set Θ. This result is

true for the same reason that, in the classical assignment linear program, there exists an optimal

solution where all the variables are integral: As long as a cycle exists, one can push “flow” through

this cycle to eliminate it while simultaneously reducing the value of some variable to 0.

Lemma 4.6 (Lenstra et al. (1990), Chakrabarty and Goel (2010), Banerjee et al. (2017)). For a

generalized assignment problem

max
∑
m∈M

∑
w∈W

ρmw ·βmw

such that
∑
w∈W

βmw ≤ αm ∀m∈M∑
m∈M

βmw ≤ αw ∀w ∈W,

with real-valued capacities αθ, there exists an optimal solution {β∗mw}m∈M,w∈W such that the graph

on Θ with edge set {(m,w) : β∗mw > 0} is a forest.

The next lemma, which is the main ingredient for step (2), shows that we can take any edge-

weighted forest and approximate it up to a factor of 2 in terms of edge weight with a disjoint union

of star graphs. The precise formulation we cite is due to Banerjee et al. (2017), though simillar

ideas have also appeared in the contexts of budgeted allocations Lenstra et al. (1990), Chakrabarty

and Goel (2010). This lemma is simple to prove: Root each tree in the forest arbitrarily, and color

each edge red or blue based on its distance modulo 2 from its root. The colors partition the forest

into two subgraphs each made up of star-shaped graphs; one of these subgraphs must capture at

least half the edge weight of the forest.20

Lemma 4.7 (Banerjee et al. (2017)). Given an edge-weighted forest, there exists a subgraph that is

a union of vertex-disjoint star graphs (i.e., trees of radius 1) such that the total edge weight of the

subgraph is at least half that of the original tree.

In context, Lemma 4.6 tells us that we can find a solution {β∗mw}m∈M,w∈W to the linear program

(7) for the platform’s first-best optimization problem such that the positive weight variables form a

20 We remark that the constant factor on this lemma is tight: Consider the tree with 2n+ 1 vertices, where the root
vertex has n children and each of these children has another child. Then, any subgraph that is a vertex-disjoint union
of star graphs can only obtain edge weight n+ 1.
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forest on Θ. We weight the edges of this forest by their contribution βmw · ρmw to social welfare

in the first-best optimization problem. Next, Lemma 4.7 tells us that we can 2-approximate this

edge-weighted forest with a union of vertex-disjoint star graphs. Each of these star graphs defines a

“star-shaped” submarket; note that each such submarket has a side where all agents are of the same

type. This completes steps (1) and (2).

4.2.2. Step (3) We now show that for any star-shaped submarket (i.e., one where one side of

the market consists entirely of agents of the same type), the platform can design a set of assortments

that induce a stationary equilibrium with welfare at least half that of the platform’s first-best

solution. Formally, we prove the following proposition:

Proposition 4.8 (Star-shaped Markets). For any star-shaped market, the platform can choose

assortments that induce a stationary equilibrium whose welfare is a 2-approximation to the platform’s

first-best welfare.

For the proof of this proposition, a key observation is that the platform’s first-best threshold

coincides with an agent’s optimal threshold if their assortment is saturated with agents of a single

type. In particular, such agents will not accept more than the platform would want them to in the

first-best equilibrium. We obtain from this observation a condition for when the first-best solution

induces a stationary equilibrium. We then show that the induced equilibrium achieves at least

half the first-best welfare. When the condition fails to hold, it turns out that we can modify the

first-best solution appropriately, by only matching agents whose capacity constraint is tight, and

still obtain an equilibrium where at least half the first-best welfare is preserved.

For the remainder of this section, we assume without loss of generality that M= {m}, i.e., our

star-shaped market is such that the M side of the market consists only of type m agents.

Structural Observations for Star-Shaped Markets. Before giving the proof of Proposition 4.8, we

develop some structural observations about the optimal first-best solution and agents’ thresholds.

We defer the proofs of all lemmas in this section to Section B.4.

In our first lemma, we characterize the platform’s first-best solution in star-shaped markets:

Lemma 4.9 (First-best Solution of a Star-Shaped Market). There exists a first-best solution

{β∗mw}w∈W and a subset w1,w2, . . . ,wn ⊆W such that ρmw1
≥ ρmw2

≥ · · · ≥ ρmwn , β∗mwi = αwi for all

i < n, and β∗mw = 0 if w 6∈ {w1, . . . ,wn}.

Now that we understand the platform’s first-best optimal solution, we can start to incorporate

incentives through the incentive constraint (6e). By Lemma 4.5, each first-best threshold τmwi in

the first-best solution described in Lemma 4.9 can be taken to be ρmwi , since ρmwi maximizes∫∞
τmwi

udFmwi

δ+
∫∞
τmwi

dFmwi
.
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Then, by the definition βmwi = fmwi

(
δ+

∫∞
τmwi

dFmwi

)
in (9), this first-best solution corresponds to

the choice of fmwi given by

fmwi = f∗mwi :=
β∗mwi

δ+
∫∞
ρmwi

dFmwi
.

Our next step is to consider incentives and characterize equilibrium when fmwi = f∗mwi . Fixing the

fmwi values gives us information about equilibrium thresholds τθ for all types because the incentive

constraint (6e) is equivalent to

τθ =
1

αθ

∑
θ′

(
fθθ′

∫ ∞
max(τθ,τθ′ )

udFθθ′

)
(12)

after scaling both the numerator and the denominator of the right-hand side by ηθ. (Recall that

this fixed point definition of equilibrium play comes from Proposition 3.1, which lets us restrict our

attention to equilibria where each type has threshold equal to their expected utility.)

As a point of comparison when analyzing agents’ equilibrium play, we consider the “idealized

thresholds” τ̂wi that arise when type wi has absolute market power. These idealized thresholds,

which are given by the fixed point equation

τ̂wi =
1

αwi
f∗mwi

∫ ∞
τ̂wi

udFmwi ,

can also be thought of as the threshold that type wi agents would set if τm = 0. (Note that the left-

hand side is monotonically increasing in τ̂wi while the right-hand side is monotonically decreasing,

so the fixed point exists and is well-defined.) We care about these idealized thresholds because,

in equilibria where fmwi = f∗mwi , the threshold chosen by type m will be a best response to these

idealized thresholds. Namely, type m will play the threshold τ̂m which satisfies

τ̂m =
1

αm

n∑
i=1

(
f∗mwi

∫ ∞
max(τ̂m,τ̂wi )

udFmwi

)
. (13)

To prove this claim, we will proceed through the following series of lemmas. These lemmas and the

definition of τ̂m will also be useful for our later analysis.

For the idealized thresholds τ̂wi , it is not difficult to establish using the definition of ρmwi and

the monotonicity property in Lemma 4.5 that:

Lemma 4.10 (Comparison to First-best Thresholds). If i < n, then τ̂wi = ρmwi (where ρmwi is

defined in Proposition 4.4). And at i= n, it holds that τ̂wn ≤ ρmwn.

A similar argument shows that these τ̂wi upper bound the equilibrium thresholds τwi for all i:

Lemma 4.11 (Comparison to Equilibrium Thresholds). In any equilibrium where fmwi = f∗mwi,

τwi ≤ τ̂wi for all i.
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While the thresholds of type wi are always upper bounded by τ̂wi , the quantity max(τm, τwi) is

always at least τ̂wi : Intuitively, if τm < τ̂wi , then type wi would set their threshold to be τ̂wi , since

that would be optimal for them. This property, together with Lemma 4.10, guarantees that no type

wi for i < n will match more than they would have under the platform’s first-best solution.

Lemma 4.12 (Lower Bound on Equilibrium Matching Thresholds). In any equilibrium where

fmwi = f∗mwi, max(τm, τwi)≥ τ̂wi for all i.

From Lemmas 4.11 and 4.12, we deduce the threshold τm played in equilibria where fmwi = f∗mwi

for all i: These lemmas together imply that max(τm, τwi) = max(τm, τ̂wi) in such equilibria. Recall

that (by Proposition 3.1) τm must also satisfy

τm =
1

αm

n∑
i=1

(
f∗mwi

∫ ∞
max(τm,τwi )

udFmwi

)
=

1

αm

n∑
i=1

(
f∗mwi

∫ ∞
max(τm,τ̂wi )

udFmwi

)
. (14)

This is exactly the definition of τ̂m as given in (13), so we may conclude τm = τ̂m.

Proving the Proposition. With our structural lemmas, we are now ready to prove Proposition 4.8.

We split our analysis into two cases based on the value of τ̂m. We show that if τ̂m > ρmwn , then

there exists a stationary equilibrium (with incentives) corresponding to the first-best f∗mwi values.

Moreover, this equilibrium obtains at least half the welfare of the first-best optimal. Otherwise,

if τ̂m ≤ ρmwn , then we consider two further possibilities: If
∑n−1

i=1 ρmwi · αmwi is at least half the

first-best optimal, then we only let type m agents meet type wi agents for i < n. Otherwise, we

only let type m agents meet type wn agents. In each of these two remaining cases, we will show

that we still capture at least half of the first-best optimal welfare.

Proof of Proposition 4.8. As mentioned above, we split our analysis into two cases based on the

value of τ̂m. For both, we use OPT to refer to the welfare value attained by the platform’s first-best

optimal solution, i.e., OPT = 2
∑n

i=1 ρmwi ·β∗mwi . We now discuss the two cases:

Case 1: τ̂m>ρmwn. If τ̂m >ρmwn , we show that the first-best choice of f∗mwi induces a stationary

equilibrium obtaining at least half the first-best optimal welfare.

To check feasibility, we need to check that the {ξθ}θ∈Θ and {ηθ}θ∈Θ given by the thresholds

in the preceding lemmas satisfy the constraints of (6). By our analysis in Proposition 4.4, it

is equivalent to check that the combined constraint (8) holds. By Lemmas 4.10 and 4.12, in

equilibrium, we have max(τm, τwi)≥ τ̂wi = ρmwi for all i < n and τm = τ̂m, so max(τm, τwn)≥
τ̂m > ρmwn . This implies all the thresholds in equilibrium are higher than they were in the

platform’s first-best solution. In other words, the corresponding matching rates ξθ are no larger

than they were in the first-best solution. It follows that the combined constraint (8) can only

have more slack, meaning that a stationary equilibrium is indeed induced by the choice of

f∗mwi and the thresholds discussed above.
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Our remaining task is to check that the realized welfare is sufficient by lower bounding τ̂m.

The intuition for the following calculation is that if type m is rejecting potential matches of

value u, then the expected payoff of type m must be at least u. Indeed, we have:

1

2
OPT =

∑
w∈W

ρmw ·β∗mw

=
∑
w∈W

(
f∗mw

∫ ∞
ρmw

udFmw

)

=
n∑
i=1

(
f∗mwi

∫ ∞
max(τ̂m,ρmwi )

udFmwi

)
+

n∑
i=1

(
f∗mwi

∫ max(τ̂m,ρmwi )

ρmwi

udFmwi

)

≤
n∑
i=1

(
f∗mwi

∫ ∞
max(τ̂m,τ̂wi )

udFmwi

)
+

n∑
i=1

(
f∗mwi

∫ ∞
ρmwi

τ̂m dFmwi

)

≤ αm ·
1

αm

n∑
i=1

(
f∗mwi

∫ ∞
max(τ̂m,τ̂wi )

udFmwi

)
+ τ̂m

n∑
i=1

β∗mwi

≤ 2αmτ̂m.

The last inequality follows from (13) and the constraint on the β∗mw from (7). Since 2αmτ̂m is

the social welfare under the current allocation (where the factor of 2 comes from accounting

for the utilities of both sides), we have the desired lower bound on welfare relative to OPT.

Case 2: τ̂m ≤ ρmwn. When τ̂m ≤ ρmwn , it is possible that the first-best choice of f∗mwi may not

induce a feasible equilibrium outcome, since type wn might accept more than the platform

intended in equilibrium, resulting in the combined constraint (8) being violated for type m.

To resolve this, we modify the first-best optimal solution in one of two ways by considering

two subcases: In the first subcase, we simply ignore type wn and match type m to types

w1,w2, . . . ,wn−1. In the second subcase, we only match type m to type wn. At least one of

these two subcases will obtain half the first-best optimal welfare.

Subcase 2(a):
∑n−1

i=1 ρmwi
·β∗

mwi
> 1

2
OPT. In this subcase, we consider a modified version

of the first-best optimal solution from before, where βmwn is set to 0. We will show that the

resulting equilibrium coincides with the first-best equilibrium for the submarket involving

only type m and types w1, . . . ,wn−1.

First, note that such a modification incurs at most a 1
2
OPT loss in first-best welfare

by assumption. Next, recall that type m’s threshold in equilibrium must satisfy the fixed

point equation (13) for the f∗mwi values for i < n. It follows that the resulting τm is at most

τ̂m (e.g., via the argument for Lemma 4.11).21 Since τ̂m ≤ ρmwn ≤ ρmwi = τ̂wi for all i < n

by Lemmas 4.9 and 4.10, we must have max(τm, τwi) = τ̂wi by Lemmas 4.11 and 4.12. This

21 Here, we clarify that τ̂m is as defined in (13) for the f∗mwi values for the unmodified first-best market.
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shows that the resulting equilibrium is identical to the corresponding first-best solution. (In

particular, it is feasible.) Hence the social welfare obtained is
∑n−1

i=1 ρmwi ·β∗mwi >
1
2
OPT.

Subcase 2(b): ρmwn ·β∗
mwn

≥ 1
2

OPT. In this subcase, we consider the first-best solution

with βmw = 0 for all w 6= wn, and set βmw = min(αm, αwn). In this new “single-edged”

market, where we only match types m and wn, the first-best social welfare will be at least

1
2
OPT by assumption. In equilibrium, the thresholds must satisfy max(τm, τwn) = ρmwn

by appropriate analogs of Lemmas 4.10 to 4.12. Thus, like in Subcase 2(a), the resulting

equilibrium is both feasible and identical to that of the corresponding first-best solution

and its social welfare is at least 1
2
OPT.

Wrapping Up. Theorem 4.1 now follows straightforwardly from our work up to this point. Since

the total of the first-best welfares for the each of the “star-shaped” submarkets is at least half the

platform’s first-best welfare for the overall market and since Proposition 4.8 shows that at least

half of the first-best welfare for each submarket can be realized in stationary equilibrium, we obtain

the desired 4-approximation for Theorem 4.1.

5. Further Examples via Simulations

To provide further intuition and to give some concrete examples of the model, we present in this

section the results of numerical simulations for a set of simple markets. We compare the outcome

achieved by our approach to search design against the first-best outcome (defined in Section 4) as

well as against the baseline outcome of random meeting.22 We present two sets of simulations: In the

first set of simulations, we interpolate between the two settings—horizontal and vertical—featured in

Section 3.3. In the second set of simulations, we highlight the role of search friction (parameterized

by δ) on the relative performances of random meeting and designed search.

5.1. Setup

For both sets of simulations, the market has four types on each side, i.e.,M= {m1,m2,m3,m4} and

W = {w1,w2,w3,w4}. We assume that (αm1
, αm2

, αm3
, αm4

) = (1,4,4,1) and (αw1
, αw2

, αw3
, αw4

) =

(2,2,3,2). Note that these arrival rates are such that there is slight asymmetry between the types

on the two sides.23

For the first set of experiments, we consider interpolating linearly between a purely horizontal

market and a purely vertical market. We assume that each distribution Dmiwj is normal N (µij, σ
2),

22 While we do not give an algorithm with formal guarantees to compute the outcome of the market under random
meeting, the outcome can nonetheless be approximated via fixed point iteration. Specifically, we iteratively compute
agents’ thresholds and equilibrium populations, under the assumption that agents meet uniformly randomly, until a
fixed point is reached. This iteration-based approximation converges for all markets considered in this section.

23 This asymmetry leads to more interesting outcomes than if the markets were, say, symmetric. If the markets were
symmetric, for our choices of utility values, it would be optimal to fully match type mi to type wi for all i.
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Figure 3 On the left-hand side, we plot social welfare for our approximation algorithm and the two benchmarks

of the first best and random meeting as q ranges from 0 to 1. On the right-hand side, we plot the same data, but

normalize the welfare values so that the first-best social welfare is 1 for each market.

with mean µij determined linearly interpolating between two extreme horizontal and vertical

markets. In the horizontal market, we assume that µhij = 0 if i 6= j and µhii = 8 for all i. That is,

agents only have positive expected utility from a match if they are of “corresonding” types. In the

vertical market, we assume that µvij = (5− i)(5− j) for all i, j. That is, each type prefers others

on the opposite side with smaller indices, with expected utilities being supermodular with respect

to this ordering. To interpolate with weight q ∈ [0,1], we set µij = (1− q)µhij + qµvij. Finally, we set

σ= 0.1 and δ= 1. The results of these simulations are plotted in Figure 3.

For the second set of experiments, we vary the search friction parameter δ. We run this experiment

using the market described above, with weighting q= 0.5. To illustrate the role that δ plays in the

relative performance of the approaches, we vary it between 0.01 and 10, evaluating the approaches

for δ belonging to the set {0.01,0.02,0.05,0.1,0.2,0.5,1,2,5,10}. The results of these simulations

are plotted in Figure 4.

5.2. Discussion

For the first set of simulations (see Figure 3), we find that our approximation algorithm has

quite good performance relative to the first best and is better than random meeting—sometimes

significantly so—throughout. The performance gap between random meeting and our approximation

to the second best is most apparent for the purely horizontal market, corroborating the intuition from

Example 3.4 that directed search is particularly important when agents’ preferences have a strong

horizontal component. As the market becomes more vertical, the gap between the performances of

our approximation algorithm and random meeting narrows. One intuition for why this occurs is

that in more vertical markets, while agents match more “assortatively,” they also tend to find more

types acceptable and thus random meeting can be more successful relative to the stark profile of

the horizontal market. Nonetheless, even in such a setting, there is a clear value to directed search

(e.g., via our algorithm).
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Figure 4 On the left-hand side, we plot social welfare for our approximation algorithm and the two benchmarks

of the first best and random meeting as δ ranges from 0.01 to 10. On the right-hand side, we plot the same data,

but normalize the welfare values so that the first-best social welfare is 1 for each market.

For the second set of simulations (see Figure 4), we find that as search friction increases—and

thus agents have fewer opportunities to search and match—directed search becomes increasingly

necessary to achieve high welfare. Intuitively, such a trend holds because when agents are allowed

more opportunities, agents can afford to perform search on their own. On the other hand, when

agents only have few opportunities to match, directed search has a larger advantage because the

platform can arrange meetings so that agents are able to quickly find desirable matches.

Finally, we note that for the examples considered, our approximation algorithm performs much

better than the worst-case 4-factor approximation proved in Theorem 4.1. This is likely because

the markets considered for the simulations are relatively simple, with only four types on each side.

6. Conclusion

Similar to shopping platforms, matching platforms also rely on recommendation systems to facilitate

search by offering personalized assortments. However, the two-sided and decentralized nature of

these markets makes the design of their recommendation systems fundamentally different from those

used for product recommendation. Congestion and misaligned incentives often necessitate making

recommendations that are sub-optimal for certain agents but improve the overall social welfare. In

this work, we take a first step toward understanding the intricacies of designing recommendation

systems based on imperfect knowledge about preferences while taking agents’ strategic behavior

into consideration. Somewhat surprisingly, we show that for general symmetric preferences, carefully

designed assortments with very limited choice can achieve approximately optimal welfare.

While our framework is general in terms of agent types and the structure of symmetric preferences,

it abstracts away from some considerations, which we discuss next. In our model, we assume that

once the platform suggests a meeting between two agents, those agents meet, observe the utility

of matching with each other, and make a decision to accept or reject the match. However, since
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meeting—which corresponds to observing the realized utility via a screening action—can be costly,

one might consider a richer model (similar to that of Kanoria and Saban (2021)) in which agents

decide whether to (i) accept/reject the match without meeting, (ii) meet at a screening cost and then

make an accept/reject decision. Studying search design under such a model for general preference

structures is a valuable direction for future work. Incorporating screening cost would involve

enriching the set of actions for each agent. This, in turn, would make encoding agents’ strategic

behavior in the design problem more complex. Furthermore, the tractability of our framework as well

as our design problem crucially relies on having symmetric preferences and a stationary environment.

As such, incorporating asymmetric match utilities or non-stationary behavior—such as history-

dependent departure rates or strategies—would require new modeling/technical developments and

is an interesting direction for future research. It is well-known that even for simple asymmetric

preferences and under random meeting, multiple stationary equilibria may arise (Burdett and Coles

1997). Thus, the platform design problem may go beyond designing meeting distributions and

involve mechanisms for equilibrium selection.

We conclude by noting that in this work, we focus on the design of matching markets with

nontransferable utilities. Such models, also known as marriage models, are motivated by online

dating platforms or labor markets with fixed wages. They can also be viewed as a special case

of markets with transferable utilities in which the match utility is evenly split between the two

parties (Smith 2006). Studying a similar setting with transfers—in which the two agents’ payoffs

constitute the Nash bargaining solution—is also well-motivated in the context of online labor

markets where wages are negotiable. In such a setting, the platform’s first-best solution remains

unchanged. As a future direction, one could explore the possibility of building on our hardness

result and approximation scheme to establish analogous results for designing search in matching

markets with transferable utilities.
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Appendix

A. Formal Definitions of MDP, Strategies, and Equilibrium

This section develops the mathematical formalization for the agents’ decision problem introduced in Section 3.1.

We also prove Lemma 3.3 and Proposition 3.1 using the formalization developed here.

A.1. Solving for the Agent’s Best Response

Recall from Section 3.1 that any fixed set of assortments defines a game for the agents, in which agents

decide who to accept and reject in their meetings. Recall also that agents play symmetric time- and history-

independent strategies. We thus write the strategy of type θ agents as a function σθ(θ
′, u) taking values in

[0,1] which specifies the probability that a type θ agent accepts when meeting a type θ′ agent whom they

value at utility u. Then σθ(θ
′, u) ·σθ′(θ,u) is the probability that two agents of types θ and θ′ who value each

other at utility u mutually accept. For measure-theoretic purposes, we restrict our attention to strategies σθ

that are measurable as a function in u for all θ′.

Rather than modeling a full-fledged dynamic game, we model each type θ agent as facing a continuous-time

MDP defined in terms of their (time-invariant) assortment λθ and opposing types’ (time-invariant) strategy

profiles σθ′ . We may do this because, as noted in Section 3.1, agents are only affected by the actions of other

types in aggregate; thus any agent’s own strategic decision will not affect the (aggregate) action of others.

In this MDP, the agent starts in a “waiting” state. From here, they either transition to an “exited” state

when they leave unmatched due to a life event or to a “meeting” state when they meet another agent. At

this “meeting” state, the agent makes a decision to either “accept” or “reject”. Then, if they match, they

transition to “exited” with a payoff; otherwise, they transition back to “waiting.”

That life events and meetings occur in a memoryless manner actually means we can rid ourselves of the

continuous-time aspect of this MDP and get an equivalent discrete-time MDP. Formally, we set up this

discrete-time MDP as follows: The agent’s initial state is Waiting. State Waiting transitions to Exited with

probability δ/(δ+
∑

θ′ λθ(θ
′)) and to PreMeetingθ′ with probability λθ(θ

′)/(δ+
∑

θ′ λθ(θ
′)). State PreMeetingθ′

transitions to Meetingθ′,u with u drawn from Dθθ′ . State Meetingθ′,u is a decision point where the agent can

either Accept or Reject. If Accept is chosen, with probability σθ′(θ,u) they transition to Exited and receive

payoff u. In all other cases, they return to state Waiting. Finally, Exited is a terminal state.

The optimal policy for this MDP admits a simple informal analysis: If uθ is the expected payoff of an

agent in state Waiting, then uθ is also the expected continuation payoff if an agent chooses Reject in state

Meetingθ′,u. Hence the agent should choose Accept if u > uθ and Reject if u < uθ. If u = uθ, the agent is

indifferent between the two options; however, since the distributions Dmw are continuous, this occurs with

probability 0. We now state this observation more formally:

Lemma A.1. For any best response σθ, let uθ be its expected payoff. Then

σθ(θ
′, u) =

{
1 if u> uθ
0 if u< uθ

for all θ′ such that λθ(θ
′)> 0 and almost all u in the support of σθ′(θ,u)dFθθ′ .
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Proving such a claim is standard in the analysis of MDPs, so we omit a detailed formal proof.

Lemma A.1 delineates a collection of dominated strategies, namely those that reject potential matches that

provide greater utility than the continuation utility (i.e., strategies σθ such that σθ(θ
′, u)< 1 for some θ′ and

u> uθ). In the subsequent analysis, we rule out such dominated strategies to eliminate “bad” equilibria, e.g.,

when all agents reject all potential matches (knowing that no one else ever accepts).

Ruling out dominated strategies as above in fact lets us focus on equilibria in threshold strategies, where

each type has a threshold τθ and accepts if and only if u≥ τθ. Our next lemma shows that any equilibrium in

non-dominated strategies is equivalent, in a certain sense, to an equilibrium in threshold strategies, where

each type’s threshold is also their expected utility:

Lemma A.2. Suppose all agents are playing best responses where they accept all potential matches worth at

least their expected utility. If type θ agents all switch to playing the threshold strategy with threshold τθ = uθ,

where uθ is the expected utility of type θ agents, then each type’s strategy is still a best response. Moreover,

the distribution of matches and the utilities at which they are realized remains the same (up to measure 0).

Proof. Since type θ agents already accept all potential matches worth at least uθ, by switching to the threshold

strategy with threshold uθ, the only change is that they now reject all potential matches worth less than uθ.

By Lemma A.1, accepting such potential matches was already a probability 0 event to begin with. Hence the

distribution of realized matches remains the same.

To see that all strategies are still best responses, notice that the expected utility of type θ agents does not

change. Furthermore, type θ agents rejecting more matches only restricts the choice sets of agents on the

opposite side. Hence their strategies σθ′ remain best responses also.

Applying Lemma A.2 in succession to all types θ ∈Θ allows us to convert any equilibrium to an equivalent

equilibrium in threshold strategies, such that each agent is thresholding at their expected utility. Thus,

without loss of generality, we may restrict our attention to such equilibria.

We can also show a converse of sorts to Lemma A.2, in which we characterize the optimal threshold for

type θ as a solution to a fixed point equation:

Lemma A.3. There exists a unique fixed point satisfying τθ = uθ (viewing uθ as a function of τθ). In

particular, if τθ satisfies the fixed point equation, then τθ is the unique threshold best response for type θ

agents such that τθ = uθ.

Proof. Let τθ be a best response threshold satisfying the fixed point equation. (By Lemma A.2, such a τθ

exists.) Note that no threshold τ ′θ > τθ can satisfy the fixed point equation because τθ is a best response. So

suppose τ ′θ < τθ. Then, an agent thresholding at τ ′θ would leave the market no later than an agent thresholding

at τθ. If they leave strictly earlier, then they must have left with payoff at least τ ′θ. And conditioned on leaving

at the same time, their expected payoff is τθ. The latter occurs with positive probability, so their expected

payoff when thresholding at τ ′θ exceeds τ ′θ. It follows that τ ′θ is not a fixed point, making τθ the unique fixed

point.
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A.2. Proof of Lemma 3.3

Proof of Lemma 3.3. To compute the agent’s expected payoff at state Waiting, we can condition on the event

that the agent does not return to Waiting. Then, the conditional probability of matching with an agent of

type θ′ is
λθ(θ

′)
∫∞

max(τθ,τθ′ )
dFθθ′

δ+
∑

θ′

(
λθ(θ′)

∫∞
max(τθ,τθ′ )

dFθθ′
)

and the expected payoff conditioned on matching with an agent of type θ′ is∫∞
max(τθ,τθ′ )

udFθθ′∫∞
max(τθ,τθ′ )

dFθθ′
.

Summing over all θ′ the product of the above two expression gives us the first equality. An application of

Lemma 3.2 along with the definition ζθ = ξθ + δ gives us the second statement.

A.3. Proof of Proposition 3.1: Equilibrium Play for Fixed Assortments

In this section, we complete the proof Proposition 3.1, which states that our model makes a unique prediction

of equilibrium play given any fixed set of assortments. We show that there exists a strategy profile where

each strategy is a best response and that this strategy profile is unique. Uniqueness implies that stationary

equilibria are robustly self-sustaining (e.g., a market in stationary equilibrium cannot be disrupted by agents

switching to another strategy profile of best responses) and that the social welfare of an assortment is

well-defined (see Section 3.2). Our proof of the existence of a profile of best responses is constructive and can

be implemented as an algorithm to compute equilibrium play. Consequently, our model’s unique prediction of

equilibrium play can also be efficiently computed by the platform.

To prove that a profile of best responses exists, we show that iterating the best response map converges

after finitely many iterations. (In a sense, this iteration behaves like a Gale-Shapley operator.) Our uniqueness

result derives from the symmetric valuations assumption that we make (see Section 2.2): Symmetric valuations

induce a linear ordering over all possible matches by their valuations. This rules out “cycles” in the preferences

and thus the possibility of multiple equilibria.

More formally, let the best response map take as input a strategy profile {σθ}θ∈Θ and output a new strategy

profile {σ′θ}θ∈Θ such that each σ′θ is the threshold strategy that thresholds at the expected utility of the

agent under the input strategy profile. (This map is a best response by Lemma A.3.) To show existence of

equilibrium, we will show that iterating this map on the strategy profile converges.

Proposition A.4. Given assortments {λθ}θ∈Θ, there is a unique profile {σθ}θ∈Θ in non-dominated strategies

such that each σθ is a best response (up to the equivalence given in Lemma A.2). This strategy profile can be

found by iterating the best-response map O(|Θ|) times.

Before we proceed with the proof of Proposition A.4, we note that the claims of Proposition 3.1 follow

from combining Lemmas A.2 and A.3 with Proposition A.4.

Proof. By applying Lemma A.2, we may restrict our attention to agents playing threshold strategies where

each type thresholds at their expected utility uθ.
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To show existence, we iterate the best response map starting from the strategy profile where each type’s

threshold is 0. We show that this iteration converges after O(|Θ|) steps. In the sequel, when we refer to the

thresholds of the i-th iteration, we mean the thresholds after applying the best response map i times.

Our first step is to show that each type’s threshold has the following pattern: The sequence of thresholds

after an odd number of iterations is (weakly) monotonically decreasing and that the sequence of thresholds

after an even number of iterations is (weakly) monotonically increasing. We prove this claim by induction.

For the base case, note that the claim is trivially true when comparing the zeroth and second iterations, since

all thresholds are initialized to 0. Next, suppose the claim is true for iterations i− 3 and i− 1. Then, note

that the thresholds after iterations i− 2 and i are each given by the expected utilities of agents. Now, if i is

odd, then we know that thresholds after iteration i− 1 are higher than those after iteration i− 3; hence, the

expected utilities, and therefore the new thresholds, are uniformly lower. The analogous argument works for

even i.

A similar argument shows that for each type, the infimum of that type’s thresholds after odd-numbered

iterations is at least the supremum of that type’s thresholds after even-numbered iterations: The claim clearly

holds for the initialization of all thresholds at 0. Next, suppose the claim holds for iteration i− 1. If i is odd,

then let j > i be any even number. (Note that the claim follows from the monotonicity property above for

j < i.) The thresholds after the j-th iteration are best responses to thresholds after the (j− 1)-th iteration.

By the inductive hypothesis, all the thresholds after the (j− 1)-th iteration are at least those of the (i− 1)-th

iteration. Hence the expected utility of each type in the (j− 1)-th iteration must be at most that of each

type in the (i− 1)-th iteration. Hence the thresholds after the j-th iteration are uniformly smaller than the

thresholds after the i-th iteration. The analogous argument works for even i.

The final step for showing the convergence of this best response iteration is to show that after each

odd-numbered iteration, at least one additional type will have their threshold “frozen,” meaning that it will

not change in any future iterations. Indeed, after any odd-numbered iteration, consider the agent type θ with

the highest threshold τθ who has not yet been shown to be frozen. Then, observe that in all future iterations,

no unfrozen agent will have a higher threshold by the two claims above—the first claim handles odd-numbered

iterations and the second claim handles even-numbered iterations. It follows that type θ would not want to

alter its best response in all following iterations: It will not be affected by the strategy of any unfrozen type,

because their thresholds will be at most τθ; the strategies of all frozen types will remain the same. Thus, type

θ will be frozen after this iteration. Since at least one additional type has their threshold frozen after each

odd-numbered iteration, iterating the best response map will converge after O(|Θ|) iterations.

Next, we show the uniqueness of this equilibrium. Suppose for the sake of contradiction that there are

two distinct strategy profiles {σθ}θ∈Θ and {σ′θ}θ∈Θ such that each strategy is both a best response and a

threshold strategy. Let the two sets of thresholds for these two strategy profiles be {τθ}θ∈Θ and {τ ′θ}θ∈Θ.

Furthermore, suppose each threshold is its corresponding type’s expected utility. Since the two strategy

profiles are distinct, there exists a type θ such that τθ 6= τ ′θ and max(τθ, τ
′
θ) is maximal. Without loss of

generality, we may assume that τθ > τ
′
θ. It follows that if τθ′ > τθ, then τθ′ = τ ′θ′ , and if τθ ≥ τθ′ , then τθ ≥ τ ′θ′ .
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Consequently, max(τθ, τθ′) = max(τθ, τ
′
θ′) for all θ′. But this gives us the following contradiction: Threshold τθ

is type θ’s expected utility, so Lemma 3.3 tells us

τ ′θ < τθ =

∑
θ′

(
λθ(θ

′)
∫∞

max(τθ,τθ′ )
udFθθ′

)
δ+

∑
θ′

(
λθ(θ′)

∫∞
max(τθ,τθ′ )

dFθθ′
) =

∑
θ′

(
λθ(θ

′)
∫∞

max(τθ,τ
′
θ′

)
udFθθ′

)
δ+

∑
θ′

(
λθ(θ′)

∫∞
max(τθ,τ

′
θ′

)
dFθθ′

) .
That the right-hand side exceeds the left-hand side means thresholding at τ ′θ is not actually a best response,

since we could do better by choosing our threshold to be τθ. Therefore, two such distinct strategy profiles

cannot exist, proving the proposition.

B. Omitted Proofs from Section 4

B.1. Proof of Proposition 4.3

Proof of Proposition 4.3. We prove this proposition via example. Let ε′ = ε/3. Consider a market where

M= {m} and W = {wH ,wL}. That is, there is a single type on side M, while side W is split into agents of

high (H) and low (L) types. We assume that the utility distributions DmwH and DmwL are point masses at 1
ε′

and 1
2
, respectively.24 Suppose further that the arrival rates are such that αm = 2, αwH = ε′, and αwL = 2− ε′.

Finally, we consider this example with δ = ε′ (i.e., the market becomes nearly frictionless as ε′→ 0).

It is not hard to see that the first-best payoff involves matching the entire supply of type m to the entire

supplies of types wH and wL, with agents accepting all matches. The first-best social welfare is thus

2

1 + δ

(
αwH ·

1

ε′
+αwL ·

1

2

)
=

4− ε′

1 + ε′
.

Notice that 4−ε′
1+ε′
≥ 4− 5ε′.

On the other hand, consider any stationary equilibrium of this market. We consider two cases: whether

or not type m agents match with type wL agents. If type m agents match with type wL agents, then the

expected utility of type m agents must be at most 1
2
, in which case the total welfare of the market is at most

2 ·αm · 1
2

= 2. On the other hand, suppose type m does not match with type wL agents. We can upper bound

the welfare of this outcome by that of the utility of all type wH agents getting matched, i.e., 2 ·αwH · 1
ε′

= 2. It

follows that the ratio between the first-best welfare and the best possible outcome for OptimalDirectedSearch

is at least
4−ε′
1+ε′

2
≥ 2− 5

2
ε′ > 2− ε′.

B.2. Proof of Proposition 4.4

Proof of Proposition 4.4. We first reparameterize the flow balance constraint by introducing new variables

fmw := ηmλm(w) = ηwλw(m)

24 Technically, these distributions do not satisfy our continuity assumption. We present our example this way for
simplicity’s sake—the same example can be made to work with continuous distributions by adding a small amount of
Gaussian noise to each utility value.
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to replace λm(w) and λw(m). (For symmetry in notation, we will use fmw and fwm interchangeably.) With

these new variables, we may rewrite the objective symmetrically as

2
∑
m∈M

∑
w∈W

(
fmw

∫ ∞
τmw

udFmw

)
.

Furthermore, note that ηθ > 0 by (6a). Hence we may scale the capacity constraint (6c) by ηθ and replace all

occurrences of ηθλθ(θ
′) with fθθ′ to obtain the equivalent constraint

ηθ ≥
∑
θ′

fθθ′ (15)

for all θ ∈Θ. We similarly replace the matching rate equation (6d) with

ξθηθ =
∑
θ′

(
fθθ′

∫ ∞
τθθ′

dFθθ′

)
. (16)

Our next step is to absolve ourselves of the variables ξθ and ηθ. For the former, we can simply merge

constraints (6a) and (16), as both are equalities involving ξθηθ, to get

αθ = δηθ +
∑
θ′

(
fθθ′

∫ ∞
τθθ′

dFθθ′

)
. (17)

Now, from (17), we can get a definition of ηθ, which we can substitute into the only remaining constraint (15)

on ηθ to get a combined flow balance, capacity, and stationarity constraint

αθ ≥
∑
θ′

(
fθθ′

(
δ+

∫ ∞
τθθ′

dFθθ′

))
(18)

for each θ ∈Θ.

To obtain the linear program constraints, we make one final substitution of

βmw := fmw

(
δ+

∫ ∞
τmw

dFmw

)
, (19)

into (18), which gives us constraints (7a) and (7b) of the linear program. We also substitute βmw into the

objective, which yields the equivalent objective

2
∑
m∈M

∑
w∈W

(
βmw ·

∫∞
τmw

udFmw

δ+
∫∞
τmw

dFmw

)
. (20)

The only remaining variables that we haven’t taken into account are the thresholds τmw. However, notice

that the optimization problem is effectively unconstrained in τmw—given any choice of βmw and τmw, we may

choose a fmw so that the definition (19) is satisfied. Thus, we may simply set τmw so that its contribution∫∞
τmw

udFmw

δ+
∫∞
τmw

dFmw
(21)

to the objective is maximized. As this is exactly the definition of ρmw, we conclude that the linear program

(7) has the same objective value as the platform’s first-best optimization problem.

It remains to prove the second claim in the equivalence between the linear program (7) and the platform’s

first-best optimization problem. For this, we note that given any feasible choice of {βmw}m∈M,w∈W , we can

reverse all of the substitutions made and obtain corresponding values for {λθ}θ∈Θ, {ηθ}θ∈Θ, {ξθ}θ∈Θ, where

the variables {τmw}m∈M,w∈W are set as to maximize (21).
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B.3. Proof of Lemma 4.5

Proof of Lemma 4.5. The logarithmic derivative of A(τ) is

d

dτ
log(A(τ)) =

F ′(τ)

δ+
∫∞
τ
dF
− τF ′(τ)∫∞

τ
udF

=

(∫ ∞
τ

(u− τ)dF − τδ
)

F ′(τ)(
δ+

∫∞
τ
dF
)(∫∞

τ
udF

) .
The sign of this derivative is given by the first term on the right-hand side, since the fraction on the right-hand

side is always non-negative. This first term is monotonically decreasing:

d

dτ

(∫ ∞
τ

(u− τ)dF − τδ
)

=−
(
δ+

∫ ∞
τ

dF

)
< 0.

Therefore, the expression is maximized when this term vanishes, i.e., when

τ =

∫∞
τ
udF

δ+
∫∞
τ
dF

= ρ.

Moreover, since the derivative is non-negative when τ ≤ ρ and is non-positive when τ ≥ ρ, we have the desired

monotonicities when τ ≤ ρ and τ ≥ ρ as well.

We also state and prove a generalization of Lemma 4.5 to non-zero thresholds and multiple types on the

opposite side. That is, the fixed point and monotonicity properties hold generally:

Lemma B.1. Define

B(τ) =

∑n

i=1

(
λi
∫∞

max(τ,τi)
udFi

)
δ +

∑n

i=1

(
λi
∫∞

max(τ,τi)
dFi

) ,
where δ > 0, λi > 0 for all i, τi ≥ 0 for all i, and Fi is a continuous distribution for each i. Let ρ satisfies the

fixed point equation ρ= maxτ≥0B(τ). Then B(ρ) = ρ. Moreover, B is monotonically increasing for τ ≤ ρ and

monotonically decreasing for τ ≥ ρ.

Proof. Note that we can write B(τ) as

B(τ) =

∫∞
τ
udG

δ+
∫∞
τ
dG

,

where dG=
∑n

i=1(λi ·1≥τi · dFi) is a new measure defined on R in terms of λi, τi, and Fi. Here, 1≥τi denotes

the indicator function that is 1 on inputs at least τi and 0 otherwise. After appropriately normalizing the

numerator and denominator (by
∫
R dG), the claim follows from Lemma 4.5.

B.4. Proofs of Lemmas from Section 4.2.2

Proof of Lemma 4.9. Recall the platform’s first-best optimization problem (7). In a star-shaped market, this

linear program reduces to a fractional knapsack problem where the platform has a knapsack of size αm

and wishes to fill it with items for each w ∈W of weight αw and value ρmw. Thus, there exists a first-best

solution {β∗mw}w∈W that matches type m agents exclusively with some subset {w1, . . . ,wn} ⊆W such that

ρmw1
≥ ρmw2

≥ · · · ≥ ρmwn and β∗mwi = αw for all i < n.

Proof of Lemma 4.10. If i < n, then β∗mwi = αwi . Therefore,

τ̂wi =
1

αwi
f∗mwi

∫ ∞
τ̂wi

udFmwi =

∫∞
τ̂wi

udFmwi

δ+
∫
ρmwi

dFmwi
.
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And by Lemma 4.5, τ̂wi = ρmwi solves the equation. For i= n, since β∗mwn ≤ αwn , we have

τ̂wn =
1

αwn
f∗mwn

∫ ∞
τ̂wn

udFmwn ≤

∫∞
τ̂wn

udFmwn

δ+
∫
ρmwn

dFmwn
.

If τ̂wn > ρmwn , then by Lemma 4.5, we would have that the right-hand side is at most ρmwn , since the

expression
∫∞
τ
udFmwn is monotonically decreasing in τ . This contradicts the assumption that τ̂wn > ρmwn .

Hence it must be the case that τ̂wn ≤ ρmwn .

Proof of Lemma 4.11. This follows from the fact that for any threshold τm, we have that

τwi =
1

αθ
f∗mwi

∫ ∞
max(τm,τwi )

udFmwi ≤
1

αwi
f∗mwi

∫ ∞
τwi

udFmwi .

The argument used in Lemma 4.10 when i= n then lets us conclude that τwi ≤ τ̂wi for all i.

Proof of Lemma 4.12. The lemma is clearly true if τm ≥ τ̂wi . Now, suppose τm < τ̂wi . Then τ̂wi would satisfy

the fixed point equation (12), meaning τ̂wi would be the equilibrium threshold of type wi.

C. Hardness of Approximation

In this section, we show that the platform’s computational problem of finding a c-approximate welfare-

maximizing stationary equilibrium is NP-hard for some constant c > 1. This shows that, conditioned on

P 6= NP, one cannot hope to obtain better than a constant factor approximation to the optimal in polynomial

time.

From a technical perspective, our approach very closely mirrors that of Chakrabarty and Goel (2010),

who show hardness of approximation for related problems (e.g., maximum budgeted allocation). While their

technique applies to our setting, it is not clear that their hardness results apply directly—a challenge specific

to our setting is that our optimization problem is continuous rather than discrete. To make this approach

work, we must show that our complicated feasibility set introduces a discrete element to the optimal allocation.

But as a consequence, we obtain a slightly worse constant c.

At a high level, we show hardness of approximation by reducing the problem of approximating MAX3LIN2

to finding a sufficiently good approximation for the platform’s welfare maximization problem. (Recall that

MAX3LIN2 is the optimization problem where, given m linear equations in n variables over F2 such that each

equation involves exactly three variables, the objective is to maximize the number of equations simultaneously

satisfied by an assignment to the variables.) That MAX3LIN2 is hard to approximate is due to H̊astad (2001)

and is a direct corollary of his celebrated 3-bit PCP. We state this hardness result in terms of a promise

problem version of MAX3LIN2:

Theorem C.1 (H̊astad (2001)). It is NP-hard to distinguish between MAX3LIN2 instances where all but εm

equations are simultaneously satisfiable and where at most
(

1
2

+ ε
)
m equations are simultaneously satisfiable

for any ε > 0.

From this classical starting point, we derive hardness of approximation for the platform’s optimization

problem:
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Theorem C.2. Computing a
(

24
23
− ε
)
-approximate solution to the platform’s welfare maximization problem

is NP-hard for any ε > 0.

Proof. As stated above, we reduce instances of MAX3LIN2 to instances of the platform’s welfare maximization

problem. Specifically, we reduce to instances where the discount rate δ is small and the distributions Dmw are

point masses.25

Consider a MAX3LIN2 instance in n variables x1, x2, . . . , xn and m equations xi` ⊕xj` ⊕xk` = b` for `∈ [m].

We construct an instance of our matching market by defining types, arrival rates, and payoffs based on these

variables and equations:

Types. Define variable types xi,0, xi,1 ∈M and switch type si ∈W for each variable xi. Define equation

types e`,(0,0,0), e`,(0,1,1), e`,(1,0,1), e`,(1,1,0) ∈W for each equation xi` ⊕ xj` ⊕ xk` = b`, one type for each

satisfying assignment to equation `. That is, type e`,(bi,bj ,bk) corresponds to the satisfying assignment

(xi` , xj` , xk`) = (bi⊕ b`, bj ⊕ b`, bk⊕ b`).

Arrival rates. Let the variable and switch types for xi each arrive at rate αi = 4mi, where mi is the

number of equations that involve xi. Let each equation type arrive at rate 3.

Payoffs. Let matching type xi,b and type si yield payoff 2(1 + 2δ) for all b. Let matching type xi,b with any

equation type whose corresponding satisfying assignment has the variable xi with parity b yield payoff 1.

All other matches provide no utility.

With this setup, no agent on side W will ever reject positive utility matches in equilibrium, since all positive

utility matches yield the same payoff for them. Moreover, no switch type agent will ever be rejected in

equilibrium, since they yield maximal payoff for variable type agents.26 And if in equilibrium an agent of type

xi,b has expected continuation utility greater than 1, then they must only accept agents of type si. These

observations set the stage for our key lemma:

Lemma C.3. In any welfare-maximizing equilibrium, the expected payoff of all switch type agents will be

2(1 + 2δ)/(1 + δ). Furthermore, such an equilibrium can be achieved by only showing type si and type xi,b

agents to each other for some b∈ {0,1} for each i.

Proof. First, we show that some variable type xi,b must have expected payoff greater than 1 for each i∈ [n].

Suppose otherwise, that there exists a welfare-maximizing stationary equilibrium such that the expected

payoffs of both variable types xi,b are at most 1 for some i. Then we could stop matching both types entirely,

by setting their assortments to 0. This comes at a loss in welfare of at most 2 · 4mi. Then, we could match

type xi,0 entirely to si, and obtain an increase in welfare of 4mi · 2(1 + 2δ)/(1 + δ)> 2 · 4mi. Finally, note that

these new assortments also produce a stationary equilibrium: Unmatching the variable types xi,b only adds

slack to the assortment feasibility constraints. Unmatching also does not affect any equation type’s threshold,

25 Although point masses are not continuous distributions, which we required in Section 2.2, we can make point masses
continuous by adding a small amount of (bounded) noise. Doing so does not change any of the conclusions. To simplify
our exposition, we focus on the case of point masses only.

26 When δ > 0, these observations still hold for distributions that are not point masses, so long as the variation in
payoff is sufficiently small.
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since they always accept in the first place. This new equilibrium has higher welfare, which contradicts our

premise that the original equilibrium is welfare-maximizing.

The preceding argument shows that in any welfare-maximizing equilibrium, there is a variable type xi,b

whose expected utility is greater than 1 for each i. Notice that this type must exclusively match with type

si agents, since equation type agents only yield payoff 1 and thus cannot be accepted in equilibrium. To

prove the second part of this lemma, we show that we can obtain another welfare-maximizing equilibrium by

matching the entire supply of type si agents to this variable type xi,b.

Suppose we have a welfare-maximizing equilibrium, and we modify it by matching the entire supply of type

si agents to a variable type xi,b whose expected utility exceeds 1. To restore a stationary equilibrium, note

that making this modification may violate two sets of constraints: First, it might violate type xi,b’s feasibility

constraint; but this is not a problem, since we can simply stop showing xi,b type agents any types but type

si, since these agents were only accepting type si agents in the first place. Second, it might cause type xi,b⊕1

to want to accept more equation type agents because they stop matching with switch type agents entirely. To

resolve this, we can simply reduce the supply of equation type agents to type xi,b⊕1 so that by accepting all

such agents, xi,b⊕1 accepts the same quantity of agents as in the original equilibrium. Finally, to see that this

new equilibrium has the same welfare as the original equilibrium, note that the flow rates of matches for both

switch and equation types are at least as high as before.

This lemma tells us that there exists a welfare-maximizing equilibrium where, for every i, one of variable

types xi,0 and xi,1 is fully matched to the switch type si. Moreover, it suffices to optimize over such equilibria.

Notice that each such equilibrium also corresponds to an assignment (x1, . . . , xn)∈ {0,1}n, where xi = b if

type xi,b⊕1 is fully matched to the switch type si.

We are now ready to state our analogs of Lemmas 4.6 and 4.7 of Chakrabarty and Goel (2010):

Lemma C.4. Given a MAX3LIN2 instance with m′ ≥ (1− ε)m simultaneously satisfiable equations, the

platform’s problem it maps to has OPT≥ (36 + 48δ− 12ε)m/(1 + δ).

Proof. Given an assignment (x1, x2, . . . , xn) ∈ {0,1}n that satisfies m′ equations, we can match the switch

types to the variable types as above. We can then match the remaining variable types to the equation types

so that each variable type matches with the equation types of each satisfied equation it is part of at a flow

rate of 4/(1 + δ). We thus have payoff 2(1 + 2δ)/(1 + δ) ·
∑

i 4mi from switch types and payoff 12/(1 + δ) per

satisfied equation. Summing these quantities gives us the lemma.

Lemma C.5. Given a MAX3LIN2 instance with m′ ≤
(

1
2

+ ε
)
m simultaneously satisfiable equations, the

platform’s problem it maps to has OPT≤ (34.5 + 48δ+ 3ε)m/(1 + δ).

Proof. Take any assignment (x1, x2, . . . , xn)∈ {0,1}n and match switch types to variable types as described

above. Now, for any equation that is not satisfied, notice that there must be some equation type that cannot

be matched at all to any of the remaining variable types. So the payoff from the equation types for unsatisfied

equations is at most 9/(1 + δ). Upper bounding the payoffs of the equation types of the satisfied equations

by 12/(1 + δ) per satisfied equation, we get 12m · 2(1 + 2δ)/(1 + δ) from switch types and at most payoff

(( 1
2
− ε)m · 9 + ( 1

2
+ ε)m · 12)/(1 + δ) from equation types. Summing these quantities proves the lemma.
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To finish, observe that Lemmas C.4 and C.5 show that if we can approximate the platform’s welfare-

maximization problem with a factor of
36 + 48δ− 12ε

34.5 + 48δ+ 3ε
,

then we would be able to distinguish the two classes of MAX3LIN2 inputs in Theorem C.1. Thus, by taking

sufficiently small δ and ε, we see that it is NP-hard to approximate the platform’s welfare-maximization

problem within any constant factor less than 36
34.5

= 24
23

.
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