
Learning	in	Stackelberg	Games	
with	Non-Myopic	Agents

Nika	Haghtalab
UC	Berkeley

Thodoris	Lykouris
MIT

Sloan	Nietert
Cornell

Alex	Wei
UC	Berkeley



Defender vs.	attacker
(Stackelberg	security	games)

Seller	vs.	buyer
(Demand	learning)

Decision-maker	vs.	applicant
(Strategic	classification)

Principal-Agent	Problems

• Principal commits	to	action;	agent best	responds
• Principal	aims	to	find	an	optimal	commitment
• Captures	many	settings	of	economic	design



But	agent	preferences	are	typically	unknown!
⇒ Principal	must	learn and	adapt from	repeated	interactions

Typical	assumption:	myopic	agent	who	always	best	responds
⇒	Stationary	learning	problem	with	(semi-)bandit	feedback

• Security	games (Letchford	et	al.,	‘09;	Blum	et	al.,	‘14),	demand	learning	(Kleinberg-Leighton,	
‘03;	Besbes-Zeevi,	‘09),	strategic	classification (Dong	et	al.,	‘18;	Chen	et	al.,	‘20)

𝟏
Principal

𝟐
Agent

Principal-Agent	Learning



What	happens	with	non-myopic	agents?
• Agent	actions	optimize	long-run	payoff
• Agents	may	not	best	respond—and	may
have	incentive	to	mislead!
(E.g.,	agent	could	mimic	another	type)

𝟏
Principal

𝟐
Agent

Challenge:	Non-Myopic Agents



What	happens	with	non-myopic	agents?
• Agent	actions	optimize	long-run	payoff
• Agents	may	not	best	respond—and	may
have	incentive	to	mislead!
(E.g.,	agent	could	mimic	another	type)

𝟏
Principal

𝟐
Agent

Challenge:	Non-Myopic Agents



What	happens	with	non-myopic	agents?
• Agent	actions	optimize	long-run	payoff
• Agents	may	not	best	respond—and	may
have	incentive	to	mislead!
(E.g.,	agent	could	mimic	another	type)

Common	model	of	non-myopic	agents:
• Not	arbitrarily	patient	(shorter-lived	than	principal;	present	bias)
• Receive	discounted	utility

⇒	Do	not	deviate	from	best	response	as	much	(or	for	as	long)

𝟏
Principal

𝟐
Agent

Challenge:	Non-Myopic Agents



What	happens	with	non-myopic	agents?
• Agent	actions	optimize	long-run	payoff
• Agents	may	not	best	respond—and	may
have	incentive	to	mislead!
(E.g.,	agent	could	mimic	another	type)

𝟏
Principal

𝟐
Agent

Challenge:	Non-Myopic	Agents

1. What	are principled	ways to	learn	from	non-myopic	agents?
2. How	do	insights	for	learning	from	myopic	agents	apply?

Questions



Reduction	framework: Non-myopic	to	myopic	learning	with:
• Minimal	reactivity:	Incentivize	low	deviation	from	best	response

• Achieved	by	delaying	principal	reaction	to	agent	behavior
• Robustness:	Learn	effectively	from	approximate	best	responses

Our	Contributions



Reduction	framework: Non-myopic	to	myopic	learning	with:
• Minimal	reactivity:	Incentivize	low	deviation	from	best	response

• Achieved	by	delaying	principal	reaction	to	agent	behavior
• Robustness:	Learn	effectively	from	approximate	best	responses

(Almost)	optimal	myopic	learning	for	Stackelberg	security	games

Principled	reduction	via	delayed	feedback	and	batched	queries
(Almost)	optimal	algorithm	for	batched	stochastic	bandits

Our	Contributions



Model



Repeat	over	T rounds:
1.			Principal commits	to	action	x ∈ 𝒳
2.			Agent responds	with	action	y ∈ 𝒴
3.			Both	parties	observe	x	and	y
4.			Principal,	agent	receive	payoffs	u(x,	y),	v(x,	y),	respectively

Agent	behavior:	Choose	actions	to	maximize	𝛾-discounted	payoff

𝔼 &
!

𝛾! ⋅ 𝑣(𝑥! , 𝑦!) | principal policy .

𝟏
Principal

𝟐
Agent

x
y

Principal-Agent	Learning



Repeat	over	T rounds:
1.			Principal commits	to	action	x ∈ 𝒳
2.			Agent responds	with	action	y ∈ 𝒴
3.			Both	parties	observe	x	and	y
4.			Principal,	agent	receive	payoffs	u(x,	y),	v(x,	y),	respectively

Principal	goal:	Minimize	Stackelberg	regret	for	unknown	agent	v:

max
"∈𝒳

𝑢 𝑥, BR(𝑥) − 𝔼
1
𝑇
&
!%&

'

𝑢 𝑥! , 𝑦!

𝟏
Principal

𝟐
Agent

x
y

Principal-Agent	Learning

Stackelberg	payoff Algorithm	payoff

Agent’s	best	response



Repeat	over	T rounds:
1.			Principal commits	to	action	x ∈ 𝒳
2.			Agent responds	with	action	y ∈ 𝒴
3.			Both	parties	observe	x	and	y
4.			Principal,	agent	receive	payoffs	u(x,	y),	v(x,	y),	respectively

𝟏
Defender

𝟐
Attacker

x
y

Example:	Stackelberg	Security	Games
Defensive strategy

Target	attacked

Expected	payoff;	depends	only	on	attacked	
target	and	whether	it	was	defended



Reduction



Policy	is	D-delayed	if	it	only	uses	feedback	from	≥ D rounds	ago

𝟏
Principal

𝟐
Agent

Non-Myopic	Learning	via	Delayed	Feedback



Policy	is	D-delayed	if	it	only	uses	feedback	from	≥ D rounds	ago
• Delay	acts	as	information	barrier!

𝟏
Principal

𝟐
Agent

Non-Myopic	Learning	via	Delayed	Feedback



Policy	is	D-delayed	if	it	only	uses	feedback	from	≥ D rounds	ago
• Delay	acts	as	information	barrier!

Principal	delaying	⇒	lower	reactivity
⇒	less	incentive	for	agent	deviation

Proposition.	If	policy	is	D-delayed,	then	an	𝛾-discounting	agent	will	
play	an	𝜀-approximate	best	response	for	𝜀 = 𝛾D/(1 − 𝛾):

v(𝑥, 𝑦) ≥ max
(!∈𝒴

v(𝑥, 𝑦′)− 𝜀

𝟏
Principal

𝟐
Agent

Non-Myopic	Learning	via	Delayed	Feedback



We	reduce	non-myopic	learning	to	algorithm	design	desiderata:
1. Robust (to	𝜀-approximate	best	response)	bandit	learning
2. Efficient	bandit	learning	with	D-delayed	feedback

max
"∈𝒳

𝑢 𝑥, BR(𝑥) − 𝔼
1
𝑇
&
!%&

'

𝑢 𝑥! , 𝑦!

𝑦! is	an	𝜀-approximate	best	response
𝑥! a	function	of (𝑥&, 𝑦&), … , (𝑥!*+ , 𝑦!*+)

Minimize	Stackelberg	regret

Non-Myopic	Learning	via	Delayed	Feedback



Robust	Bandit	Learning
(applied	to	Stackelberg	security	games)



Stackelberg	security	games

Targets	=	{A,	B}
Defenses	𝒳 =	distributions	over	{∅,	A,	B}

Strategy	2:	Protect	B

St
ra
te
gy
	1
:	P
ro
te
ct
	A



Stackelberg	security	games

Strategy	2:	Protect	B

St
ra
te
gy
	1
:	P
ro
te
ct
	A

𝔼,~" 𝑢(𝑖, 𝐴)
Defender	objective:

𝔼!~# 𝑣(𝑖, 𝐵) ≤ 𝔼!~# 𝑣(𝑖, 𝐴)
Agent	choice:

Targets	=	{A,	B}
Defenses	𝒳 =	distributions	over	{∅,	A,	B}
• Payoffs	given	by	attacked	target	and
whether	it	was	defended

A

B



Identify	optimal	algorithm	CLINCH for	learning	in	security	games

Traditionally:
• Run	learning	subroutine	for	each	of	𝑛 regions
• For	each	region,	run	generic	(costly)	learning	algo

Our	approach:
• Identify	structural	properties	(⇒	solving	single	region	suffices!)
• Apply	“cutting-plane”-type	optimization	(Grünbaum’s	theorem)

Robust	(Myopic)	Learning	in	Security	Games

Strategy	2:	Protect	B

St
ra
te
gy
	1
:	P
ro
te
ct
	A

A

B



Principal’s	optimal	action	𝑥⋆ ∈ 𝒳 satisfies:
• Agent	indifferent between	all	protected	targets
• x⋆ also	minimizes	agent’s	payoff
• x⋆ is	the	intersection	of	all	non-empty	regions

Key	Structural	Property	of	Security	Games

Strategy	2:	Protect	B

St
ra
te
gy
	1
:	P
ro
te
ct
	A

A

B
𝑥⋆



Principal’s	optimal	action	𝑥⋆ ∈ 𝒳 satisfies:
• Agent	indifferent between	all	protected	targets
• x⋆ also	minimizes	agent’s	payoff
• x⋆ is	the	intersection	of	all	non-empty	regions

Robustness:	feedback	always	points	“towards”	x⋆

Theorem.	CLINCH finds	a	𝛿-approx.	equilibrium	with	𝑂(𝑁 log(𝑁/𝛿))
queries	to	an	(approx.)	best	response	oracle

Key	Structural	Property	of	Security	Games

Strategy	2:	Protect	B

St
ra
te
gy
	1
:	P
ro
te
ct
	A

A

B
𝑥⋆



Bandits	with	Delayed	Feedback
(applied	to	multi-armed	bandits)



Naïve	solution:	Repeat	each	action	D times	⇒	up	to	D	times	regret
• Always	works,	but	often	suboptimal

Better:	Show	bandits	with	delays	equivalent	to	batched	bandits:
• Batch	size	B =	submit	B	queries	simultaneously
• Dependent	delay	sequences	⇒	independent	batches
• Well-studied	setting	(and	thus	a	nice	target	for	reduction)

Proposition.	Algorithm	with	delay	D	and	regret	R⇒	algorithm	with	
batch	size	D and	regret	O(R),	and	vice	versa.

Efficient	Bandit	Learning	with	Delayed	Feedback



Naïve	solution:	Repeat	each	action	D times	⇒	up	to	D	times	regret
• Always	works,	but	often	suboptimal

Better:	Show	bandits	with	delays	equivalent	to	batched	bandits:

• Batch	size	B =	submit	B	queries	simultaneously
• Well-studied	setting	(and	thus	a	nice	reduction	target)

Proposition.	Algorithm	with	delay	D	and	regret	R⇒	algorithm	with	
batch	size	D and	regret	O(R),	and	vice	versa.

𝑥! 𝑥" … 𝑥# 𝑥$

Policy	with	batch	size	D

𝑥" 𝑥# … 𝑥$ "𝑥" "𝑥# … "𝑥$ 𝑥%

Interleaving	two	copies	⇒	policy	with	delay	D	– 1

Efficient	Bandit	Learning	with	Delayed	Feedback



Naïve	B-batched	regret	bound:	𝐵 ⋅ log 𝑇/𝐵 ∑,
&
/&

Idea:	Exploration	of	ACTIVEARMELIMINATION parallelizable
• Allows	for	parallelization	within	each	batch
• Fewer	“wasted”	queries

Stochastic	Multi-Armed	Bandits



Naïve	B-batched	regret	bound:	𝐵 ⋅ log 𝑇/𝐵 ∑,
&
/&

Idea:	Exploration	of	ACTIVEARMELIMINATION parallelizable
• Allows	for	parallelization	within	each	batch
• Fewer	“wasted”	queries

B-batched	ACTIVEARMELIMINATION (ours):	𝐵 log𝐾 + log(𝑇)∑,
&
/&

⇒	For	demand	learning,	handles	much	more	patient	agents

Stochastic	Multi-Armed	Bandits



Reduction	framework: Non-myopic	to	myopic	learning	with:
• Minimal	reactivity:	Incentivize	low	deviation	from	best	response

• Achieved	by	delaying	principal	reaction	to	agent	behavior
• Robustness:	Learn	effectively	from	approximate	best	responses

(Almost)	optimal	myopic	learning	for	Stackelberg	security	games

Principled	reduction	via	delayed	feedback	and	batched	queries
(Almost)	optimal	algorithm	for	batched	stochastic	bandits

Summary


